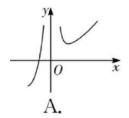
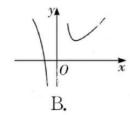
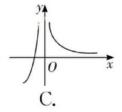
江苏省仪征中学 2023 届高三年级第二学期迎一模热身训练 2

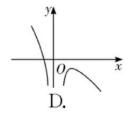
班级	姓名	日期	评价
りょうス	_^ユムユ┦	_ H 791	

- 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要 求的.
- 1.已知复数z满足 $\frac{z}{1-i} \frac{i}{1+i} = 1$,则z =(




$$B.-2 - i$$


$$C.2 + i$$


$$D.2 - i$$

- 2.已知集合 $A = \{(x,y) \mid x^2 + y^2 \le 2, x \in \mathbb{Z}, y \in \mathbb{Z}\}, B = \{(x,y) \mid x+1 > 0\}, 则A \cap B$ 的元素个数为() A.9
- 3.已知函数 $f(x) = 3x \ln|x|, 则 f(x)$ 的图象大致为(

4.我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家 赵爽在为《周髀算经》作注时给出的,被后人称为"赵爽弦图":"赵爽弦图"是数形结合思想的体现, 是中国古代数学的图腾.还被用作第24届国际数学家大会的会徽.如右图.大正方形ABCD是由4个 全等的直角三角形和中间的小正方形组成的,若 $\overrightarrow{AB} = a$, $\overrightarrow{AD} = b$, $E \rightarrow BF$ 的中点.则 $\overrightarrow{AE} = c$

$$B.\frac{2}{5}a + \frac{4}{5}b$$

$$C.\frac{4}{3}a + \frac{2}{3}b$$

$$D.\frac{2}{3}a + \frac{4}{3}b$$

 $5.(a-x)(2+x)^6$ 的展开式中 x^5 的系数是 12,则实数a的值为(

6.已知四棱锥P-ABCD的底面是边长为2的正方形,Q为BC的中点,PQ \bot 面ABCD,且PQ=2,动点N在 以D为球心,半径为1的球面上运动,点M在面ABCD内运动,且 $PM = \sqrt{5}$,则MN长度的最小值为(

$$A.\sqrt{5} - \frac{3}{2}$$

$$B.2 - \sqrt{3}$$

$$C.\sqrt{5} - 2$$

$$D.\sqrt{3} - \frac{3}{2}$$

7.设 $a = \frac{1}{4}$, $b = e^{\sin \frac{1}{8}} - 1$, $c = \ln \frac{9}{7}$, e为自然对数的底数,则(

A.a > b > c

B.
$$a > c > b$$

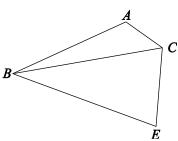
8.已知函数 $f(x) = \sqrt{3}\sin^2\frac{\omega x}{2} + \frac{1}{2}\sin\omega x - \frac{\sqrt{3}}{2}(\omega > 0)$,若f(x)在 $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ 上无零点,则 ω 的取值范围是()

$$A.\left(0,\frac{2}{9}\right] \cup \left[\frac{8}{9},+\infty\right]$$

$$B.\left(0,\frac{2}{9}\right] \cup \left[\frac{2}{3},\frac{8}{9}\right]$$

$$C.\left(0,\frac{2}{9}\right]\cup\left[\frac{8}{9},1\right]$$

$$A.\left(0,\frac{2}{9}\right] \cup \left[\frac{8}{9},+\infty\right) \qquad B.\left(0,\frac{2}{9}\right] \cup \left[\frac{2}{3},\frac{8}{9}\right] \qquad C.\left(0,\frac{2}{9}\right] \cup \left[\frac{8}{9},1\right] \qquad D.\left(\frac{2}{9},\frac{8}{9}\right] \cup \left[1,+\infty\right)$$


求.全部选对的得5分,部分选对的得2分,	
9.已知止万体 $ABCD - A_1B_1C_1D_1$ 的棱长为 $1, \triangle F$ 的是()	是棱CC ₁ 上的一个动点(包含端点),则下列说法不正确
A.存在点 P ,使 DP //面 AB_1D_1	B.二面角 $P - BB_1 - D$ 的平面角为 60°
$C.PB + PD_1$ 的最小值是 $\sqrt{5}$	$D.P$ 到平面 AB_1D_1 的距离最大值是 $\frac{\sqrt{3}}{3}$.
10.定义:如果函数 $f(x)$ 在 $[a,b]$ 上存在 $x_1,x_2(a <$	$x_1 < x_2 < b$),满足 $f'(x_1) = f'(x_2) = \frac{f(a) - f(b)}{a - b}$,则
称 x_1, x_2 为 $[a, b]$ 上的"对望数",函数 $f(x)$ 为 $[a, b]$ A.若函数 $f(x)$ 为 $[a, b]$ 上的"对望函数",则 $f(x)$ B.函数 $f(x) = x^2 + mx + n$ 在任意区间 $[a, b]$	在[a, b]上单调
C.函数 $f(x) = \frac{1}{3}x^3 - x^2 + 2$ 是[0,2]上的"对望	函数"
D.函数 $f(x) = x + \sin x $ 是 $\left[\frac{\pi}{6}, \frac{11\pi}{6}\right]$ 上的"对望函	
11.已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左,在	5项点分别为 A_1,A_2 ,点 P,Q 是双曲线 C 上关于原点对称
的两点(异于顶点),直线 PA_1 , PA_2 , QA_1 的斜率	分别为 k_{PA_1} , k_{PA_2} , k_{QA_1} , 若 $k_{PA_1} \cdot k_{PA_2} = \frac{3}{4}$,则下列说法
正确的是()	
A.双曲线 C 的渐近线方程为 $y = \pm \frac{3}{4}x$	B.双曲线 C 的离心率为 $\frac{\sqrt{7}}{2}$
$C.k_{PA_1} \cdot k_{QA_1}$ 为定值 12.定义在 R 上的函数 $f(x)$ 与 $g(x)$ 的导函数分别 $g'(x-1)$,且 $g(x+2)$ 为奇函数,则下列说法一 A. $g(2)=0$ C.函数 $f(x)$ 是周期函数	D. $\tan \angle A_1 P A_2$ 的取值范围为 $(0, +\infty)$ 引为 $f'(x)$ 和 $g'(x)$,若 $g(x+1)-f(2-x)=2$, $f'(x)=$ 一定正确的是() B.函数 $f'(x)$ 关于 $x=2$ 对称 D. $\sum_{k=1}^{2023}g(k)=0$
三、填空题:本题共 4 小题,每小题 5 分,共 20 分	
13.将 4 个 1 和 2 个 0 随机排成一行,则 2 个 0 刁	
14. 平面且用坐标系 xOy 中,已知 AB 是圆 C : (x –	$(1)^2 + (y-1)^2 = 2$ 的一条弦,且 $AC \perp BC$, M 是 AB 的中
点,当弦 AB 在圆 C 上运动时,直线 $l:3x-4y-$	$9 = 0$ 上总存在 P , Q 两点,使得 $\angle PMQ \geqslant \frac{n}{2}$ 恒成立,则线
段PQ长度的取值范围是	
15.已知 $f(x) = e^{x}(e)$ 为自然对数的底数), $g(x) = $ 为	$\ln x + 2$,直线 l 是 $f(x)$ 与 $g(x)$ 的公切线,则直线 l 的方程
16.如图,已知椭圆 C_1 : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 和打	地物线 C_2 : $y^2 = 2px(p > 0)$
的一个交点为 P ,直线 PO 交 C_1 于点 Q ,过 Q 作 PQ (不同于 Q),若 PR 是 C_2 的切线,则椭圆 C_1 的离心	_ / /// \

四、解答题: 本题共3小题,每小题12分,共36分.

17.在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, $(\sin A + \sin B)(\sin A - \sin B) = \sin C(\sin C + \sin B)$.

(1)求A;

(2)如图,在 $\triangle ABC$ 所在平面上存在点 E,连接 BE,CE,若 $EC = \sqrt{3}AC$, $\angle ACE = 120^{\circ}$, $\angle EBC = 30^{\circ}$,BC = 2,求 $\triangle ABC$ 的面积.

18.2022 年 11 月 21 日. 第 22 届世界杯在卡塔尔开幕. 小组赛阶段,已知某小组有甲、乙、丙、丁四支球队,这四支球队之间进行单循环比赛(每支球队均与另外三支球队进行一场比赛);每场比赛胜者积 3 分,负者积 0 分;若出现平局,则比赛双方各积 1 分.若每场比赛中,一支球队胜对手或负对手的概率均为 $\frac{1}{4}$,出现平局的概率为 $\frac{1}{2}$.

- (1)求甲队在参加两场比赛后积分 X 的分布列与数学期望;
- (2)小组赛结束后,求四支球队积分均相同的概率.

19. 设函数 $f(x) = 2ax(2-\cos 2x) - \sin 2x$.

(1)当a=1时,求f(x)在 $\left[0,\frac{\pi}{2}\right]$ 上的最值;

(2)对 $\forall x \in (0,+\infty)$,不等式 $f\left(\frac{x}{2}+\pi\right) > 2a\pi\left(2-\cos x\right)$ 恒成立,求实数 a 的取值范围.