三角函数单元过关训练(1)

姓名 学号 日期 评价

- 一、选择题:本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符 合题目要求的.
- 1. 在直角坐标系 xOy 中,角 α 的始边为 x 轴的非负半轴,其终边上的一点 P 的坐标为(2m,m)(其 中m<0),则 $\cos 2\alpha=$

B. $\frac{3}{5}$

C. $-\frac{3}{5}$

D. $-\frac{4}{5}$

2. 若 $\alpha \in (0, \frac{\pi}{2})$,且 $\cos 2\alpha = \frac{\sqrt{2}}{5}\sin(\alpha + \frac{\pi}{4})$,则 $\tan \alpha =$

)

A. $\frac{3}{4}$

B. $\frac{3}{5}$

C. $\frac{4}{2}$

3. 已知 $\cos\left(\alpha + \frac{\pi}{2}\right) = \frac{3}{5}$,则 $\cos 2\alpha =$

A. $-\frac{1}{5}$ B. $\frac{1}{5}$

C. $-\frac{7}{25}$

D. $\frac{7}{25}$

4. 若当 $x=\theta$ 时,函数 $f(x)=3\sin x+4\cos x$ 取得最大值,则 $\cos \theta=$

()

)

A. $\frac{3}{\pi}$

 $B.\frac{4}{\pi}$

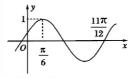
C. $-\frac{3}{5}$

D. $-\frac{4}{5}$

5. 已知函数 $f(x) = \frac{\tan x}{1 - \tan^2 x}$,则函数 f(x)的最小正周期为

)

A. $\frac{\pi}{4}$


B. $\frac{\pi}{2}$

D. 2π

6. 函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2}$)的部分图象如图所示,则将 y = f(x)的图象向

右平移 $\frac{\pi}{6}$ 个单位后,得到的图象解析式为

)

A. $y = \sin 2x$

C. $y = \sin\left(2x + \frac{2\pi}{3}\right)$ D. $y = \sin\left(2x - \frac{\pi}{6}\right)$

7. 设函数 $f(x) = \sin(\omega x + \varphi) + \cos(\omega x + \varphi) \left(\omega > 0, |\varphi| < \frac{\pi}{2}\right)$ 的最小正周期为 π ,且 $f(-x) = \sin(\omega x + \varphi) + \cos(\omega x + \varphi) \left(\omega > 0, |\varphi| < \frac{\pi}{2}\right)$

f(x), \emptyset f(x)

)

A. 在 $\left[0,\frac{\pi}{2}\right]$ 单调递增

B. 在 $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ 单调递减

C. 在 $\left[0,\frac{\pi}{2}\right]$ 单调递减

D. 在 $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ 单调递增

8. 关于函数 $f(x) = \sin|x| + |\sin x|$ 有下述四个结论:

①f(x)是偶函数

②f(x)在区间 $\left(\frac{\pi}{2},\pi\right)$ 单调递增

③f(x)在[$-\pi,\pi$]有 4 个零点 其中所有正确结论的编号是

4f(x)的最大值为 2

A. 1)24

B. 24

C. ①4

D. (1)(3)

_	、多选题:共 4 小题 , 0 分.	每小题 5 分共 20 分. 全	部选对的得 5 分,部分边	达对的得 3分,有选	错的	得
9.	将函数 $f(x) = \sqrt{3} \sin x$	$12x + \cos 2x$ 的图象向右	平移 $\frac{\pi}{6}$,再把所有点的横	坐标伸长到原来的	2 倍(纵
	坐标长度不变)得到 A. 函数 $g(x)$ 的最大	函数 $g(x)$ 的图象,则下 g 值为 $g(x)$	列说法正确的是 B. 函数 $g(x)$ 的最小正	周期为 π	()
	C. 函数 g(x)在区间	$\left[\frac{\pi}{6},\frac{2\pi}{3}\right]$ 上单调递增	D. 函数 $g(x)$ 的图象关	于直线 $x = \frac{\pi}{3}$ 对称		
10.	. 已知 $P\left(\frac{1}{2},2\right)$ 是函	j数 $f(x) = A\sin(\omega x + \varphi)$	$(A > 0, \omega > 0)$ 图象的一个	最高点, B , C 是与	P 相	邻
		BC =6,则 $f(x)$ 的图象 B. (1,0)		D. (5,0)	()
11.	11. 已知函数 $f(x) = \sin\left(\omega x - \frac{\pi}{3}\right)(\omega > 0)$ 的最小正周期为 π . 将 $f(x)$ 的图象向左平移 $\frac{\pi}{3}$ 个单位长					
	度后,所得函数图象	(0 /		3	()
	A. $x = 0$	B. $x = \frac{\pi}{12}$	C. $x = \frac{\pi}{8}$	D. $x = \frac{7}{12}\pi$		
12.	设函数 $f(x) = \sin(x)$	$(\omega x + \varphi)$,其中 $\omega > 0$, $\varphi \in$	$\left[\frac{\pi}{4},\frac{\pi}{3}\right]$,已知 $f(x)$ 在	[0,2π]上有且仅有	4 个	零
	点,则下列ω的值中	中满足条件的是	2		()
	A. $\omega = \frac{13}{6}$	U	$C.\omega=2$	D. $\omega = \frac{3}{4}$		
	E、填空题:本大题共 4 小题,每题 5 分,共 20 分. 把答案填写在题中横线上.					
13.	A . 已知角 θ 的顶点为坐标原点,始边为 x 轴的非负半轴,若 $P(-\sqrt{3},m)$ 是角 θ 终边上的一点,且					
	$\sin\theta = \frac{\sqrt{10}}{10}$,设 $n = ta$	an $\left(heta+rac{\pi}{4} ight)$,则 $m^2+n^2=$	<u> </u>			
14.	把函数 $y = \sin(x +$	$\left(\frac{\pi}{6}\right)$ 的图象上各点的横丛	上标缩短为原来的 $\frac{1}{2}$,纵 $\frac{1}{2}$	と标不变,再将图象	向右	平
	移 $\frac{\pi}{3}$ 个单位长度,得	F到函数 $g(x)$ 的图象,则	$g(x)$ 在区间 $\left(\frac{4\pi}{3},\frac{11\pi}{6}\right)$ 上	上的值域为	•	
15.	定义在[0,π]上的函	函数 $y = \sin\left(\omega x - \frac{\pi}{3}\right)(\omega)$	>0) 有零点, 且 值域 M ⊆	$\left[-rac{\sqrt{3}}{2},1 ight]$,则 ω 的	取值	范
	围是					
16.	为圆孔及轮廓圆弧 切点, B 是圆弧 AE	习,学生加工制作零件, ⁵ AB 所在圆的圆心,A 是 3 与直线 BC 的切点, [圆弧 AB 与直线 AG 的 四边形 DE FG 为矩形,	B	Н	
	$BC \perp DG$,垂足为 C , $tan \angle ODC = \frac{3}{5}$, $BH // DG$, $EF = 12$ cm, $DE = D$					
		5 和 EF 的距离均为 7 cm 积为 cm².	n,圆孔半径为1 cm,则	E		$^{ m J}_F$
m	经发55. 大十55 + 2	○小馬 廿 20 △ 匈父☆	2.4.大字洛明 证明过程:	北法首北座		

四、解答题:本大题共 2 小题 ,共 20 分. 解答应与出文字说明、证明过程或演算步骤.

17.(本小题满分 10 分)

已知函数 $f(x) = 2\cos\omega x (\sin\omega x + \sqrt{3}\cos\omega x) - \sqrt{3} - 1(\omega > 0), f(x_1) = 1, f(x_2) = -3, 且$ $|x_1 - x_2|_{\min} = \frac{\pi}{2}.$

(1)求 f(x)的单调递减区间;

(2)若
$$_{\alpha}$$
, $_{\beta}$ $\in \left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$, $_{f}\left(\frac{\beta}{2} - \frac{\pi}{3}\right) = \frac{3}{5}$, $\sin(\alpha + \beta) = -\frac{7}{25}$,求 $_{f}\left(\frac{\alpha}{2}\right)$ 的值.

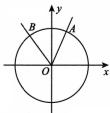
18. (本小题满分 12 分)

已知函数 $f(x) = \sin(2x+\varphi)\left(|\varphi| < \frac{\pi}{2}\right)$,且 $\tan \varphi = -\sqrt{3}$.

- (1)求函数 f(x)在区间 $\left\lceil 0, \frac{\pi}{2} \right\rceil$ 上的最大值;
- (2)若将函数 f(x)图象上所有点的横坐标变为原来的 2 倍,纵坐标不变,再将得到的图象沿 x 轴向左平移 $\frac{\pi}{3}$ 个单位长度得到函数 g(x)的图象,求 $g\left(\frac{\pi}{6}\right)$ 的值.

19. (本小题满分 12 分)

已知函数 $f(x) = \cos\omega x(\sqrt{3}\sin\omega x - \cos\omega x)(\omega > 0)$, A, B 分别是曲线 y = f(x)上的一个最高点和一个最低点,且 |AB|的最小值为 $\sqrt{\frac{\pi^2}{4} + 4}$.


- (1) 求函数 f(x) 的单调递增区间和曲线 y=f(x) 的对称中心的坐标;
- (2)若不等式|f(x)-m|<1 对 $x \in \left[-\frac{\pi}{12}, \frac{\pi}{2}\right]$ 恒成立,求实数 m 的取值范围.

20. (本小题满分 12 分)

如图,在平面直角坐标系 xOy 中,点 $A(x_1,y_1)$ 、 $B(x_2,y_2)$ 都在单位圆 O 上, $\angle xOA = \alpha$,且 $\alpha \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.

(1)若
$$\sin\left(\alpha + \frac{\pi}{6}\right) = \frac{13}{14}$$
,求 x_1 的值;

(2)若
$$\angle AOB = \frac{\pi}{3}$$
,求 $y = x_1^2 + y_2^2$ 的取值范围.

21. (本小题满分 12 分)

已知向量 $\mathbf{m} = (2\cos\omega x, -1), \mathbf{n} = (\sin\omega x - \cos\omega x, 2)(\omega > 0),$ 函数 $f(x) = \mathbf{m} \cdot \mathbf{n} + 3,$ 若函数 f(x)的图象的两个相邻对称中心的距离为 $\frac{\pi}{2}$.

- (1)求函数 f(x)的单调增区间;
- (2)将函数 f(x)的图象先向左平移 $\frac{\pi}{4}$ 个单位,然后纵坐标不变,横坐标缩短为原来的 $\frac{1}{2}$ 倍,得到函数 g(x)的图象,当 $x \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ 时,求函数 g(x)的值域.

22.(本小题满分 12 分)

将函数 $g(x) = 4\sin x \cdot \cos\left(x + \frac{\pi}{6}\right)$ 的图象向左平移 $\varphi\left(0 < \varphi \leqslant \frac{\pi}{2}\right)$ 个单位长度后得到 f(x) 的图象.

- (1)若 f(x)为偶函数, $\tan \alpha > 2$,求 $f(\alpha)$ 的取值范围.
- (2)若 f(x)在 $\left(\pi, \frac{7\pi}{6}\right)$ 上是单调函数,求 φ 的取值范围.