

独立性检验创设,概率与统计交汇

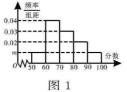
■江苏省兴化市第一中学 刘 林

概率与统计专题相关的知识点错综复杂,又环环相扣,相关考题通常不是孤立地考查一个知识点,而是对多个知识点的综合考查。而基于独立性检验的创新情境问题,是新高考数学试卷中一个比较常见的题型,由此实现概率与统计的合理交汇与融合,使得各个独立的知识点加以合理联系,综合考查同学们的"四基"。

一、与统计的交汇

例 1 2022年是共青团建团 100周年,某校组织"学团史,知团情,感团恩"知识测试,现从该校随机抽取了 100名学生,并将他们的测试成绩按[50,60),[60,70),[70,80),[80,90),[90,100],分为5组,得到如图1所示的频率分布直方图。

(1)求图中m 的值, $\frac{0.02}{0.03}$ 并估计这 100 名学生测 ^{0.02} 试成绩的平均数;(同一 ^{0.03} 组数据用该组数据所在 区间的中点值作代表)



(2)规定测试成绩不低于 80 分为"优秀", 请将表 1 所示的 2×2 列联表(单位:人)补充 完整,求出 x,y,z,并判断是否有 95%的把握 认为"测试成绩是否优秀与性别有关"。

表 1

	优秀	非优秀	合计
女生	x	30	x + 30
男生	У	z	55
合计	x+y	30+z	100

附:
$$K^2 = \frac{(a+b+c+d)(ad+bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

表 2

$P(K^2>k_0)$	0.1	0.05	0.01
$k_{\scriptscriptstyle 0}$	2.706	3.841	6.635

解析: (1)由题意得 $10 \times (m+0.04+0.03+0.02+m)=1$,解得 m=0.005。

估计这 100 名学生测试成绩的平均数= $(55\times0.005+65\times0.04+75\times0.03+85\times0.02+95\times0.005)\times10=73$ 。

(2)在抽取的 100 名学生中,成绩优秀的 学生人数为 100×0 . 25 = 25,由此可得完整 的 2×2 列联表,如表 3 所示:

表 3

	优秀	非优秀	合计
女生	15	30	45
男生	10	45	55
合计	25	75	100

可得
$$K^2 = \frac{100 \times (15 \times 45 - 30 \times 10)^2}{45 \times 55 \times 25 \times 75} =$$

 $\frac{100}{33}$ \approx 3.03 < 3.841, 所以没有95%的把握认为"测试成绩是否优秀与性别有关"。

点评:以实际应用为创新情境,设置独立性检验为问题背景,结合统计中的频率分布直方图、样本估计等知识,综合考查概率与统计中的相关应用问题。

二、与概率的交汇

例 2 经常有人说"数学学不好,物理也很难学好",这话听着好像很有道理的样子,那么真实情况的确是这样吗?为此,某校数学兴趣小组收集了500名同学的数学成绩和物理成绩,记单科成绩在平均分之上为优

秀,整理数据形成如图 30 2 所示的统计扇形图。

(1)根据图 2 完成 表 4 所示的 2×2 列联 ²⁴ 表,并判断能否有 95% 的把握认为数学成绩 与物理成绩有关;

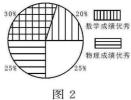


表 4

	物理优秀	物理不优秀	合计
数学优秀			
数学不优秀			
合计			

(2)视频率为概率,从全校数学成绩优秀的学生中随机抽取 3 人,记抽取到的 3 人中物理成绩优秀的人数为随机变量 X,求 X 的分布列与期望。

附:
$$K^2 = \frac{(a+b+c+d)(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
。

$P(K^2>k_0)$	0.1	0.05	0.025	0.01
k_{0}	2.706	3.841	5.024	6. 635

解析:(1)由题意,2×2列联表如表 6:

表 6

	物理优秀	物理不优秀	合计
数学优秀	150	100	250
数学不优秀	125	125	250
合计	275	225	500

可得
$$K^2 = \frac{500(150 \times 125 - 100 \times 125)^2}{250 \times 250 \times 275 \times 225}$$

≈5.051>3.841, 所以有95%的把握认为数学成绩与物理成绩有关。

(2)由于 X 的可能取值为 0,1,2,3,可得 $P(X=0) = \frac{8}{125} = 0.064; P(X=1) = \frac{36}{125} = 0.288; P(X=2) = \frac{54}{125} = 0.432; P(X=3) = \frac{27}{125} = 0.216.$

所以 X 的分布列为表 7:

表 7

X	0	1	2	3
P	0.064	0.288	0.432	0.216

所以 $E(X) = 0 \times 0.064 + 1 \times 0.288 + 2 \times 0.432 + 3 \times 0.216 = 1.8$ 。

点评:以实际应用为创新情境,设置独立 性检验为问题背景,结合概率中的重复独立 试验、随机变量的分布列与期望等知识,综合 考查概率与统计中的相关应用问题。

三、与其他知识的交汇

例 3 2022 年 5 月以来,世界多个国 家报告了猴痘病例,非洲地区猴痘地方性流 行国家较多。我国目前为止尚无猴痘病例报 告。我国作为为人民健康负责任的国家,对 可能出现的猴痘病毒防控提前做出部署。同 时国家卫生健康委员会同国家中医药管理局 制定了《猴痘诊疗指南(2022年版)》。此《指 南》中指出:①猴痘病人潜伏期 5~21 天; ②以往接种过天花疫苗者对猴痘病毒存在一 定程度的交叉保护力。据此,援非中国医疗 队针对援助的某非洲国家制定了猴痘病毒防 控措施之一是要求与猴痘病毒确诊患者的密 切接触者集中医学观察 21 天。在医学观察 期结束后发现密切接触者中未接种过天花疫 苗者感染病毒的比例较大。对该国家 200 个 接种与未接种天花疫苗的密切接触者样本医 学观察结束后,统计了感染病毒情况,得到表 8 所示的列联表:

表 8

接种天花疫苗	感染猴痘	未感染猴痘
与否人数	病毒	病毒
未接种	30	60
已接种	20	90

- (1)是否有 99%的把握认为密切接触者 感染猴痘病毒与未接种天花疫苗有关。
- (2)以样本中结束医学观察的密切接触者感染猴痘病毒的频率估计概率。现从该国所有结束医学观察的密切接触者中随机抽取4人进行感染猴痘病毒人数统计,求其中至多有2人感染猴痘病毒的概率。
- (3)该国现有一个中风险村庄,当地政府决定对村庄内所有住户进行排查。在排查期间,发现一户3口之家与确诊患者有过密切接触,这种情况下医护人员要对其家庭成员逐一进行猴痘病毒检测。每名成员进行检测后即告知结果,若检测结果呈阳性,则该家庭被确定为"感染高危家庭"。假设该家庭每个成员检测呈阳性的概率均为 p(0<p<1)且

高考中概率统计问题的分析与展望

■河北省廊坊市第一中学 杨 月

通过对近几年高考试卷的研究,发现概率统计模块的考查更注重在数学知识交汇处命题,强调数学知识的综合性与应用性。解答题中对于概率统计的考查,新高考数学试题朝着"重视基础、强调综合、体现应用与着力创新"等特点的命题方向发展。

一、强调综合

"综合性"主要体现在概率统计模块的知识与其他数学知识之间的综合与应用,特别是与函数、方程、不等式、数列等知识的交汇,同时与其他学科及数学思想方法的综合。

例 1 数据显示,中国直播购物规模近几年保持高速增长态势,而直播购物中的商品质量问题逐渐成为人们关注的重点。已知某顾客在直播电商处购买了 $n(n \in \mathbb{N}^*)$ 件商品。

(1)若 *n*=10,且买到的商品中恰好有 2 件不合格品,该顾客等可能地依次对商品进 行检查。求顾客检查的前 4 件商品中不合格 品件数 X 的分布列。

(2)抽检中发现直播电商产品不合格率为 0.2。若顾客购买的 n 件商品中,至少有 2 件合格产品的概率不小于 0.998 4,求 n 的最小值。

解析:(1)由题意可知,X的所有可能取值为0,1,2。

$$\frac{C_2^1 C_8^3}{C_{10}^4} = \frac{8}{15}; P(X=2) = \frac{C_2^2 C_8^2}{C_{10}^4} = \frac{2}{15}.$$

所以 X 的分布列为表 1。

表 1

ĺ	X	0	1	5
	P	$\frac{1}{3}$	$\frac{8}{15}$	$\frac{2}{15}$

(2)记"顾客购买的 n 件商品中,至少有

相互独立。记该家庭至少检测了 2 名成员才能确定为"感染高危家庭"的概率为 f(p)。试问: 当 p 为何值时, f(p)最大?

附:
$$K^2 = \frac{(a+b+c+d)(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
。

$P(K^2>k_0)$	0.1	0.05	0.025	0.01
$m{k}_{0}$	2.706	3.841	5.024	6.635

解析:(1)依题意知, K^2 =

$$\frac{200\times(30\times90-60\times20)^2}{90\times110\times50\times150}\approx 6.061<6.635,$$

所以没有 99%的把握认为密切接触者感染猴 痘病毒与未接种天花疫苗有关。

(2)由题意得,该地区每名密切接触者感染病毒的概率为 $p = \frac{30+20}{200} = \frac{1}{4}$,设随机抽取的 4 人中至多有 2 人感染病毒为事件 A,则 $P(A) = 1 - C_4^3 \cdot \left(\frac{1}{4}\right)^3 \cdot \frac{3}{4} - \left(\frac{1}{4}\right)^4 = \frac{243}{256}$ 。

(3)设事件 B = 检测了 2 名成员确定为 "感染高危家庭",事件 C = 检测了 3 名成员确定为 "感染高危家庭",则 P(B) = $(1-p)p, P(C) = (1-p)^2p$,所以 $f(p) = (1-p)p + (1-p)^2p = p(1-p)(2-p)$,设 x = 1-p,则 p = 1-x,所以 $y = (1-x)x(1+x) = x-x^3$,求导得 $y' = 1-3x^2$,令 y' = 0,得 $x = \frac{\sqrt{3}}{3}$,此时 $p = 1-\frac{\sqrt{3}}{3}$,f(p)取得最大值。

点评:以实际应用为创新情境,设置独立性检验为问题背景,结合概率中的重复独立试验,函数与导数的应用等知识,综合考查概率与统计中的相关应用问题。

基于独立性检验创设的概率与统计专题,由于独立性检验的介人,使得问题的起点相对来说比较低,同时又可以多层面设计,起伏比较大,为问题的设置与能力的考查创设很好的基础,备受各方关注,成为新高考数学试卷中概率与统计专题部分的一个特色与亮点。 (责任编辑 王福华)