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The Greatest Common Divisor of Certain Set of Binomial Coefficients
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Abstract  In this paper, we prove that if n > 4 and a > 0 are integers satisfying a < %, then

g0d<{<z>:a<k<n—a}>= H P
n=p™+b(n,p), 0<b(n,p)<a,

where (Z) = m, and the product in the right hand side runs through all primes p such thatn = p™ +b(n, p), m €

Nand 0 < b(n,p) < a. As an application of our result, we give an answer to a problem in Hong [3].

Key words Binomial coefficient ~Greatest common divisor

— it — MR R &= KA E
BREIE RFEz* #HKFEU

(SERIITSE RS BUSRES0R, TM, 510631)

W E OAGEV: En>4fa> 0 AEHAHL a< 2,0

gcd({(Z):a<k<n—a}>— H P,
n=p"+b(n,p), 0<b(n,p)<a,

F(}) = k,(n oI A ERBB A HEA D =p™ +b(n,p),meNF0<bn,p) <abtiZHKp A
ARG A, KRMNEEHE [3] L P eg—AFA.
KRR —AXRH RALEHK

1 Introduction

Let n and k be nonnegative integers. The binomial coefficient (}) is defined by (}) = & (n o if
k < m, and is 0 otherwise. For any finite set .S of integers, we denote the greatest common divisor of all
the elements of S by ged(S). For any prime p, we use v,(n) to denote the largest nonnegative integer e
such that p® divides n. Such v, (n) is called the normalized p-adic valuation of n. For any integer n > 0,
let b(n) > 0 be the smallest integer b such that the set of binomial coefficients (;), where b < m < n—>b,

has a (non-trivial) common divisor. In 1909, Ram [10] proved that for any n > 1 and any prime p,

n p, if n = p® for somei > 0,
cd 1<k<n-1 =
. ({ <k> - }> { 1, otherwise.
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In 1985, a generalization of Ram’s result is obtained in [5] by determining d(n;r,s) =
ged({(}):r<k<s}) forany r < s < n. However, the explicit formula for d(n;r, s)
is too complicated to be stated here. On the other hand, Mendelsohn et al. [9] showed that
ged ({ (i) 1<k< n}) = 21472(7) In 1972, Albree [1] generalized the result in [9] by showing
that if p is a prime, then gcd ({ (T) 1 <k<pn,p )(k:}) = p't¥»(")_ In 2016, Hong [3] proved that

gcd <{ (nzn) 11 <k <mn,ged(k,m) = 1}) =m H prr ()

p| ged(m,n)

and proposed the following interesting problem:

Problem 1.1 Letn > 2 be an integer and b(n) be defined as above. Find the explicit formula for

ged ({ (Z) b(n) <k <n-— b(n)}) .

In 1859, Kummer [6] got the following result.

Theorem 1.1 For any integers 0 < k£ < n and any prime p:

Vp <(Z>> = t{carries when adding k to n — k in base p}.

By Kummer’s theorem, v, ((2)) = 0 if and only if there are no carries when adding k to n — k in

base p. This happens if and only if each base-p digit of & is no more than the corresponding base-p digit of
n. Based on Kummer’s theorem, McTague [8] showed that the greatest common divisor of the binomial
coefficients (%), (*"), -+, (,2",). equals the products of all odd primes p such that 2n = p + p, for
some ¢ < j. McTague also obtained some other results in [8].

For any prime p, we denote the sum of the standard base-p digits of n by o,,(n), i.e. op(n) := X_ga;
ifn=>""_,a;p’ withr > 0 and a; being integers such that a,, > 0 and 0 < a; < p — 1 for all integers i
with 0 <7 <r.

The main purpose of this paper is to give an answer to the above mentioned problem of Hong. We
give an explicit formula for the greatest common divisor of the set of the binomial coefficients (Z), where
k runs over all the integers between a and n — a. Let n > 4 be a positive integer. For any prime p < n,
let p™, m € N be the largest prime power of p which is less than or equal to n, and let b(n, p) = n — p™,

then n = p™ + b(n, p), m € N. The main result of this paper is as follows.

Theorem 1.2 Letn > 4 and a > 0 be integers with a < % Then
cd ). a<k<n-—a = H
g k . — p7
n=p™+b(n,p), 0<b(n,p)<a,

where the product runs through all primes p such that n = p™ + b(n,p),m € Nand 0 < b(n,p) < a.

By the result of [11], we know that b(n) < %, n = p" +b(n) for some positive integer m. Moreover,
p is the only prime with n = p™ + b(n,p), m € Nand 0 < b(n) < b(n, p). Therefore, as an immediate
consequence of Theorem 1.2, we have the following result, which gives an answer to the above problem

of Hong.
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Corollary 1.1 For any integer n > 0, let b(n) > 0 be the smallest integer b such that the binomial
coefficients (2), where b < k < n — b, has a (non-trivial) common divisor. Then n = p" + b(n) for some

prime p and positive integer m, b(n) < % and

ged <{ (Z) b(n) <k <n-— b(n)}> = p.

Remark 1.1 It is easy to check that

(=) 6))) -

and ged ((%), (ﬁ), (f;), (?;), (ﬂ), (f;), (%g), (f;)) =32x5x19%x23,50a < 7 in Theorem 1.1 is best

possible in general.

The arrangement of the paper is follows: In the Section 2, we prove several preliminary lemmas.

Then we use these lemmas to prove Theorem 1.2 in Section 3.

2 Preliminaries

In this section, we prove some lemmas that are needed in the proof of Theorem 1.2. The following

Lemma is essential in the sequel.

Lemma 2.1 Let p be a prime and letn > 2, e > 0 and d be integers such that 1 < d < p—1and

n > dp®. Then I/p((dze)) =t —e, where t = max{v,(n —14),i=0,1,--- ,dp® — 1}.

Proof Suppose that ¢ = v,(n—1) for some integer ¢ with 0 < 7 < dp®—1, then we haven—i = upt,
ged(u,p) = 1. Letn = gp® + 7,0 <7 < p® — 1, then 0 < r < dp® — Land vp(n — ) = v, (qp°) > e,

hence t > e. Now
n(n—1)-(n—dp®+1) = (up’ +) -~ (up’ + 1) (up") (up’ — 1)~ (up’ —dp® +i +1).
Ift > e, since vp(j) < e < tforany j with 1 < j < dp® — 1, then we have

vplup' +j) =1p(j), 1<j<i 2.1

and
vp(up’ = j) =vp(4), 1<j<dp®—i—1. (2.2)

If t = eand v,(j) < e for any j with 0 < j < max{i, dp® — i — 1}, then the above equalities (2.1) and
(2.2) hold since v, (j) < t = e. If t = e and v, (j) = e for some j with 1 < j < max{i, dp® —i — 1}, then
j=dip®,1<dy <d-land1 < dyp° < dp®—i—1. Weclaim that v, (up® —j) = v, (j) = e. Otherwise,
vp(up® —j) = vp(up® — di1p®) > e. Take iy =i +dip° theniy =i+ dip® <i+dp*—i—1=dp°—1
and v, (up® — i1) > e, which contradicts to the definition of ¢. Hence v, (up® — j) = v,,(j) = e and the
above equalities (2.1) and (2.2) hold in this case.
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Note that v,(s) = v, (up® — s) holds for all 5,1 < s < dp® — 1. Hence

i dp®—i—1
vp(n(n —1)--(n—dp*+1)) = ¢+ vp(wp' +5)+ D wvplup’ —s)
j=1 s=1
i dp®—i—1 i dp®—1
—t+Y )+ D, ws)=t+> @)+ > v
j=1 s=1 j=1 j=i+1

dp®—1
=t+ D upli) =t+up((dp)) —e,
j=1
it follows that v, (( . )) = t — e. This completes the proof.
Remark 2.1 Letd = 1and v,(n) > e. Then we get the result of Lemma 2.3 in Hong [3].

Lemma 2.2 ([4]) Let n and k be non-negative integers with n > k, and let p be a prime number.
n o(k)+o(n—k)—o,(n
Then Vp((k)) _ a(k)+a( 1) p(n)

p—

Lemma 2.3 Letn > 2,a be positive integers with a < n/2 and let p be a prime. If n = p™ +
b(n,p),m € Nand 0 < b(n,p) < a, then 0,,(k) + o,(n — k) > p+ o,(b(n, p)) for every positive integer
kwitha <k <n—a.

Proof By the assumptions, we have
n=p"+b(n,p), b(n.p) < max{p™ — 1, a}.

Hence for any positive integer k£ with a < k < n — a, we have a < k,n — k < p™. Let b(n,p) =
Z?:Ol a;pt, k = Z?Z)l bipt, n—k = Zf:ol cipt, 0 < a;, by, ¢; < p— 1 be the base p expansions of
b(n,p), k and n — k, respectively. Then

bm—l +Cm-1=0am-1+p oOr bm—l +Cn-1=0m_1+p— 1.

Letd = Y72 aip’, k' = "2 bipt, U = S 2 eip’ by 1+ Em1 = a1 +p, thend = k' +1'.
Hence (k) = b1 + 0p(k ), 0p(n — k) = ¢m1 + 0,(1'), 05 (b(n,p)) = @1 + 0,(b ). By Lemma
2.2, we obtain that

o<, ((Z)) _ (k) +;p_<l’1> — (b))

hence o, (k') + 0, (1) — o, (b) > 0. It follows that

op(k) + op(n — k) =1 = op(b(n, p))
— b1+ 0p(E )+ em1+0p(l) =1 =am 1 —ap(b)
= apm 1 +p+op(k) +op(l') =1 —am1—0op(b)
=p—1+o,(k) +oy(l) = op(b)

>p—1
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That is, o, (k) + 0, (n— k) > p+0p(b(1n,p)). by 1 +Cm_1 = am_1+p—1,thenk +1 = b +p™~ L.

By Lemma 2.2 again, we get

0<y, <<b, +p’m1>> - Up(k/) + Up(l,) - Up(b’ +pm71),
k p—1

SO
op(k) +0p(l') = 00 +p™ 1) 2 0,
Thus,
op(k) +op(n —k) =1 —0,(b(n,p))

= b1+ 0p(k ) + et + (1) =1 — a1 — op(b)

*pflJFUp(k)JFUp( )*1*Up(b,)

—p—l—l—ap(k:)—i-ap( )—ap(b/—i—pm*l) >p—1

(

That is, o, (k) + op(n — k) > p + 0,(b(n, p)). This completes the proof.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Proof Suppose that p is a prime such that n = p™ + b(n,p), m € N and b(n,p) < a, we will first
show that p | (}) forevery k witha < k < n—a. Since b(n, p) < a < %,wehaveb(n,p) < p™. Note that

m—1

a<k<n-—a,soa<kn—k<p™ Letb(n,p) => 1" B a;pt, k—zl 0 bipi,n—kzz " Gt
0 < a;, b;, ¢; < p — 1 be the base p expansions of b(n, p), k and n — k, respectively. Then by Lemmas

2.2 and 2.3, we obtain that
n
k

p(k) +op(n — k) —op(n)
p—=
_ op(k) +op(n — k) — ap(b(n,p)) — 1 >1
p—1 -

Hence p | (}) forevery k witha < k <n —a.

Next we show that 1,((})) = 1 for some positive integer k with a < k < n — a. We divide the proof
into two cases according to m = 1 and m > 1.

Case 1: m = 1. It follows that n = p 4 b(n,p). Since b(n,p) < a < %, we have a + 1 < p. Take
k=a+1,thena < k <n—a,and I/p((a:il)) = 1by Lemma 2.1.

Case2: m > 1. Letn = qp™ ' + 7,0 <r < p™ ! thenqg>p>2 Ifqg=2s, s> 1, we take

k=sp™ ' Wehaven = 2sp™ ' + 7 < (25 + 1)p™, sp™ T > 527 > 8 > a,sp" T = 250 <

5 <n—aand yp((spﬁ,l)) = 1 by Lemma 2.1.
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If ¢ = 3, wetake k = 2p™~ 1. In this case, n = 3p™ ™' +r < 4p™~1 2pm~1 > 2 > g

m—1 _ 2(n—1)

2p ) <28 <n—aand yp((pr,f,l)) = 1 by Lemma 2.1 again.
Ifqg=2s+1,s > 1, wetake k = sp™ 1. Nown = (2s+ )p™~ !t +r < (25 + 2)pm L,

s(n—r)
2s+1

To sum up, we have found a positive integer k such that v,((})) = landa < k <n —a.

m—1 sn n m—1 __
sp >2$+22§>a.sp =

<5 <n-—a,and Vp((sp,ff,l)) = 1by Lemma 2.1.

Let p < n be a prime such that n = p™ + b(n, p),m € N. Since p™ is the largest prime power of p
which is less than or equal ton, wehave n = dp™+r,1 < d < (p—1)and0 < r < p™—1. Ifb(n,p) < a
does not hold, then we have a < b(n,p) < pmorn=dp™ +r,2<d<(p—1)and0 <r < p™ — 1.
Now we show that there exists a positive integer k such thata < k¥ < n — a and 1/,,((2)) =0.

If p is a prime such that n = p™ +r,a < r < p™, thena < p™ < n — a and v, ((p’fn)) = 0by
Lemma 2.1.

If p is a prime such that n = dp™ + 2 < d < (p—1)and0 < r < p™ — 1. For
d = 2s,3,(2s + 1)(s > 1), we take k = sp™,2p™ and sp™, respectively. By the same argument as
above, we have a < k < n — a and v, ((})) = 0 by Lemma 2.1. Therefore, we have proved that
for any prime p, v, (ged ({(}) :a <k <n-—a})) = 1ifn = p™ + b(n,p) and b(n,p) < a and
vp (ged ({(}) : @ < k <n—a})) = 0 otherwise. It follows that

wa({(acra-)= T a

n=p™+b(n,p),0<b(n,p)<a,

where the product runs through all primes p such that n = p™ + b(n,p),m € Nand 0 < b(n,p) < a.
This completes the proof of Theorem 1.2.
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