江苏省仪征中学 2021—2022 学年度第二学期高二数学学科导学案

第二章 第4讲 奇偶性、对称性与周期性

	研制人: 张顺军			
	姓名:	学号:		2022. 5. 20
【本课在课程标》	=			
	,了解函数奇偶性的含义, ,了解函数的周期性、对称性及其	且何旁ツ		
③数形结合研究		儿門忌义,		
【课前热身】	当然时 11/次。			
	(中,既是偶函数又在区间(0,+∞)上是增函数的有	Ī ()	
• - 2 - x	D.	$y = x^{\frac{2}{3}}$		
A. $y = 2^{- x }$	В.	$y = x^3$		
C . $y = x^2 - 1$	D .	$y = x^3$		
解析: 选BC A	. $\diamondsuit y = f(x) = 2^{- x }, \ f(-x) = 2^{- -x } =$	=2 ^{- x} =f(x),是偶	函数,但在(0, +∞)上	., y=2 ^{-x} 是减
函数,故A错误	; B. $\Leftrightarrow y = f(x) = x^{\frac{2}{3}}, f(-x) = (-x)^{\frac{1}{3}}$	$\frac{2}{3} = x^{\frac{2}{3}}$, 是偶函	数,且在区间(0, +∞)上	.是增函数,故
B 正确; C.令 y=	$= f(x) = x^2 - 1, \ f(-x) = (-x)^2 - 1 = x^2$	² -1=f(x),是偶	函数,且在区间(0, +∞	·)上是增函数,
故 C 正确; D.令	$y=f(x)=x^3$, $f(-x)=(-x)^3=$	$-x^3 = -f(x), \mathbb{R}$	奇函数,故D错误.故:	选 B、C.
$2.已知 f(x) = ax^2 +$	- bx 是定义在[a - 1,2a]上的偶函数	, 那么 a + b 的值		
解析: $:f(x)=ax$	² +bx 是定义在[a-1,2a]上的偶函数	敗,∴a-1+2a=	$=0, :: a = \frac{1}{3}.$	
	$\therefore b=0, \ \ \therefore a+b=\frac{1}{3}.$			
答案: $\frac{1}{3}$				
3.已知 f(x)是定义	在 R 上的奇函数 , 当 x≥0 时 , f(x)) = 3 ^x + m(m 为常	数),则 f(- log ₃ 5)的值为_	·
解析: 当 <i>x</i> ≥0 时	$f(x) = 3^x + m(m 为常数), 则 f(0) = 3^x$	3 ⁰ +m=0,解得	$m=-1$, $\therefore f(x)=3^x-1$.	·函数 <i>f</i> (x)是定
义在 R 上的奇函		$\log_3 5 - 1) = -4.$		
答案: -4				
4定义在 R 上的(偶函数 f(x)满足 f(x) = f(x + 2), 且在	[[- 1,0] 上单调递	减,设 $a = f(\sqrt{2})$, $b = f(2)$), $c = f(3)$,则
a,b,c的大小头	关系是()			
A . <i>b</i> < <i>c</i> < <i>a</i>	В.	a <b<c< td=""><td></td><td></td></b<c<>		
C . <i>b</i> < <i>a</i> < <i>c</i>	D .	a <c<b< td=""><td></td><td></td></c<b<>		
解析: 选 C 因 >	为偶函数 <i>f(x)</i> 满足 <i>f(x</i> +2)= <i>f(x)</i> ,所	以函数 f(x)的周其	月为 2,则 $a=f(\sqrt{2})=f(\sqrt{2})$	(2-2), b=f(2)
=f(0), c=f(3)=	f(-1). 因为-1<√2-2<0,且函数	と f(x)在[-1,0]上	单调递减,所以 <i>b<a<c< i="">.故</a<c<></i>	(选 C.

5.偶函数 y = f(x)的图象关于直线 x = 2 对称 , f(3) = 3 , 则 $f(-1) = _______.$

解析: 因为 f(x)的图象关于直线 x=2 对称, 所以 f(x)=f(4-x), f(-x)=f(4+x),

又 f(-x)=f(x), 所以 f(x)=f(4+x), 则 f(-1)=f(4-1)=f(3)=3.

答案: 3

6.若 $f(x) = \ln(e^{3x} + 1) + ax$ 是偶函数,则 $a = ____.$

[解析] 函数 $f(x) = \ln(e^{3x} + 1) + ax$ 为偶函数, 故 f(-x) = f(x), 即 $\ln(e^{-3x} + 1) - ax = \ln(e^{3x} + 1) + ax$, 化简得 $\ln(e^{3x} + 1) + ax$, 化简明 $\ln(e^{3x}$

【知识梳理】

【典例探究】

考点一 函数奇偶性的判定

例 1 判断下列函数的奇偶性:

$$(1)f(x) = x^3 - \sin x$$

$$(2)f(x) = \sqrt{3 - x^2} + \sqrt{x^2 - 3} ;$$

$$(3)f(x) = \frac{\lg(1-x^2)}{|x-2|-2};$$

$$(4)f(x) = \begin{cases} x^2 + x , x < 0, \\ -x^2 + x, x > 0; \end{cases}$$

$$(5)f(x) = \log_2(x + \sqrt{x^2 + 1}) .$$

解 (1) 由函数奇偶性定义知,函数为奇函数

即函数 f(x)的定义域为 $\{-\sqrt{3}, \sqrt{3}\}$,关于原点对称.

从而
$$f(x) = \sqrt{3-x^2} + \sqrt{x^2-3} = 0$$
.

因此
$$f(-x) = -f(x)$$
且 $f(-x) = f(x)$,

所以函数 f(x)既是奇函数又是偶函数.

(3)由
$$\begin{cases} 1-x^2>0, \\ |x-2|\neq 2, \end{cases}$$
 得定义域为 $(-1,0)\cup(0,1)$,关于原点对称.

$$\therefore x-2<0, \quad \therefore |x-2|-2=-x, \quad \therefore f(x)=\frac{\lg(1-x^2)}{-x}.$$

$$\text{ } \forall : f(-x) = \frac{\lg[1 - (-x)^2]}{x} = -\frac{\lg(1 - x^2)}{-x} = -f(x),$$

- : 函数 f(x) 为奇函数.
- (4)显然函数 f(x)的定义域为($-\infty$, 0) \cup (0, $+\infty$), 关于原点对称.
- :: 当 x<0 时,-x>0,

$$\iiint f(-x) = -(-x)^2 - x = -x^2 - x = -f(x);$$

当 x>0 时,-x<0,

$$\mathbb{M} f(-x) = (-x)^2 - x = x^2 - x = -f(x);$$

综上可知,对于定义域内的任意 x,总有 f(-x) = -f(x)成立, : 函数 f(x)为奇函数.

(5)显然函数 f(x)的定义域为 \mathbf{R} ,

$$f(-x) = \log_2[-x + \sqrt{(-x)^2 + 1}]$$

$$=\log_2(\sqrt{x^2+1}-x)$$

$$=\log_2(\sqrt{x^2+1}+x)^{-1}$$

$$=-\log_2(\sqrt{x^2+1}+x)=-f(x),$$

故 f(x)为奇函数.

考点二 函数奇偶性的应用

例 2. (1) 若函数
$$f(x) = x^3 \left(\frac{1}{2^x - 1} + a\right)$$
 为偶函数 ,则 a 的值为______.

答案 $\frac{1}{2}$

解析 方法一 (定义法) :: f(x) 为偶函数,

$$\therefore f(-x) = f(x),$$

$$\therefore (-x)^{3} \left(\frac{1}{2^{-x} - 1} + a \right) = x^{3} \left(\frac{1}{2^{x} - 1} + a \right),$$

$$\therefore 2a = -\left(\frac{1}{2^{-x}-1} + \frac{1}{2^{x}-1}\right) = 1,$$

$$\therefore a = \frac{1}{2}$$
.

方法二 (特值法)f(x)为偶函数,

$$\therefore f(-1) = f(1),$$

$$\chi f(-1) = -a+2$$
, $f(1)=a+1$,

$$\therefore -a+2=a+1, \quad \therefore a=\frac{1}{2}.$$

(2) 设 f(x)为奇函数,且当 $x \ge 0$ 时, $f(x) = e^x - 1$,则当 x < 0 时, f(x)等于()

A .
$$e^{-x} - 1$$

B .
$$e^{-x} + 1$$

$$C \cdot -e^{-x} - 1$$

D.
$$-e^{-x}+1$$

答案 D

解析 当 x < 0 时, -x > 0,

∵当 $x \ge 0$ 时, $f(x) = e^x - 1$,

$$\therefore f(-x) = e^{-x} - 1.$$

又:f(x)为奇函数,

:
$$f(x) = -f(-x) = -e^{-x} + 1$$
.

答案 4

解析 $\diamondsuit g(x) = ax^3 + bx^5$,

则 g(x)为奇函数,

当
$$x$$
∈[$-t$, t]时, $g(x)_{max}+g(x)_{min}=0$,

 $\mathbb{X} f(x) = g(x) + 2$,

$$\therefore M = g(x)_{\text{max}} + 2, \quad m = g(x)_{\text{min}} + 2,$$

:
$$M+m=g(x)_{max}+2+g(x)_{min}+2=4$$
.

考点三 函数的周期性、对称性

例 3(1)(2021 湖南六校联考)已知定义在R上的函数 f(x)满足 f(x) = -f(x+2) ,当 $x \in (0,2]$ 时 $f(x) = 2^x + \log_2 x$,

则
$$f(2\ 020) = ($$
)

$$B.\frac{1}{2}$$

(2)函数
$$f(x)$$
满足 $f(x+4) = f(x)(x \in \mathbb{R})$,且在区间(- 2 , 2]上 , $f(x) = \begin{cases} \cos \frac{\pi x}{2} , 0 < x \leq 2 , \\ \left| x + \frac{1}{2} \right| , -2 < x \leq 0 , \end{cases}$ 则 $f(f(15))$ 的值

为_____.

[解析] (1)由 f(x) = -f(x+2),

得 f(x+4)=f(x),

所以函数 f(x)是周期为 4 的周期函数,

所以 $f(2\ 020) = f(505 \times 4) = f(0) = -f(0+2)$

$$=-(2^2+\log_2 2)=-5.$$

(2)由函数 f(x)满足 $f(x+4)=f(x)(x \in \mathbb{R})$,

可知函数 f(x)的周期是 4,

所以
$$f(15)=f(-1)=\left|-1+\frac{1}{2}\right|=\frac{1}{2}$$
,

所以
$$f(f(15)) = f(\frac{1}{2}) = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
.

[答案] (1)D (2) $\frac{\sqrt{2}}{2}$

- (3) (多选)已知函数 f(x)的定义域为 R , 对任意 x 都有 f(2+x) = f(2-x) , 且 f(-x) = f(x) , 则下列结论正确的是()
- $A \cdot f(x)$ 的图象关于 x = 2 对称
- B. f(x)的图象关于(2,0)对称
- C . f(x)的最小正周期为 4
- D. y = f(x + 4)为偶函数

答案 ACD

解析 : f(2+x)=f(2-x), 则 f(x)的图象关于 x=2 对称, 故 A 正确, B 错误;

- **:**函数 f(x)的图象关于 x=2 对称,则 f(-x)=f(x+4),又 f(-x)=f(x),**:**f(x+4)=f(x),**:**T=4,故 C 正确;
- T=4且 f(x)为偶函数,故 y=f(x+4)为偶函数,故 D 正确

【课堂小结】

江苏省仪征中学 2021—2022 学年度第二学期高二数学学科作业

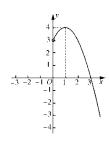
第二章 第4讲 奇偶性、对称性与周期性

	研制人: 张顺军 审核人: 鲁媛媛				
班级:姓名:	研制人: 张顺军 审核人: 鲁媛媛 学号: 完成日期: 2022.5.20 (时长: 60min)				
一、单选题					
1. 若函数 $f(x) = \begin{cases} x^2 + 2x, & x \ge \\ g(x), & x < 0 \end{cases}$	$ au_0$, 为奇函数,则 $f(g(-1))$ 的值为()				
A. 15 B. 10	C. -10 D. -15				
2. (2021 烟台二模)已知 $f(x)$ 是定义在 R 上的奇函数, $f(2-x)=f(x)$,当 $x \in [0,1]$ 时, $f(x)=x^3$,那么()					
A. $f(2\ 021) = 0$	B. 2 是 f(x)的一个周期				
C.	$(x)^3$ D. $f(x) > 0$ 的解集为 $(4k, 4k+2)(k \in \mathbb{Z})$				
3.已知 $f(x)$ 满足 $f(x-1)=f(x+1)$. 若 $f(1)=1$, $f(0)=0$, 则 $f(2\ 020)+f(2\ 021)$ 等于()					
A1	B. 0				
C. 1	D. 2				
4.已知奇函数 $f(x)$ 对任意的实数 x 都满足 $f(x+4)+f(x)=2f(2)$,若 $f(-1)+f(-2)=2$,则 $f(2\ 021)$ 等于()					
A. 0	B. 2				
C2	D. 2 021				
5.已知函数 $f(x)$ 是定义在 R 上的周期为 2 的奇函数,当 $0 < x < 1$ 时, $f(x) = 4^x$,则 $f\left(-\frac{5}{2}\right) + f(1)$ 等于()					
A2 B. 0 C.	2 D. 1				
二、多选题					
6. (多选)已知偶函数 $f(x)$ 满足 $f(x)+f(2-x)=0$,那么下列说法正确的是()					
A. 函数 $f(x)$ 是以 2 为周期的周期函数					
B. 函数 f(x)是以 4 为周期的周期函数					
C. 函数 $f(x)$ 是以 6 为周期的周期函数					
D. 函数 $f(x-1)$ 为奇函数					
7. (多选)已知函数 $f(x)$ 是定义在($-\infty$, 0)∪(0 , $+\infty$)上的奇函数,当 $x>0$ 时, $f(x)=x^2-2x+3$,则下列结论					
正确的是()					
A. $ f(x) \ge 2$	B. $\leq x < 0$ 时, $f(x) = -x^2 - 2x - 3$				
C. $x=1$ 是 $f(x)$ 图象的一条对	才称轴 D. $f(x)$ 在($-\infty$, -1)上单调递增				
三、填空题					
8.若函数 $f(x) = x^3 (a \ 2^x - 2^{-x})$ 是	是偶函数,则 <i>a</i> =				
9. $f(x)$ 是定义在 R 上的周期为 3 的奇函数,且 $f(-1)=2f(10)+3$,那么 $f(2\ 021)=$					
10. 已知集合 $A = \{x \mid y = \log_2(2-x)\}$, $B = \{x \mid 1 \le x \le 3\}$,那么 $A \cap B = $					
11. 定义在 R 上的函数 $f(x)$ 满足 $f(x+1) = 2f(x)$. 若当 $0 \le x \le 1$ 时. $f(x) = x(1-x)$, 则当 $-1 \le x \le 0$ 时,					
$f(x) = \underline{\hspace{1cm}}.$					

★12. 定义在R上的函数y = f(x)满足以下三个条件:

①对于任意的 $x \in R$,都有f(x + 1) = f(x - 1);

②函数y = f(x+1)的图象关于y轴对称;


③对于任意的 $x_1, x_2 \in [0,1]$,都有 $(f(x_1) - f(x_2))(x_1 - x_2) > 0$

四、解答题

13. 已知函数 y=f(x)是定义在 R 上的奇函数,在 $(0, +\infty)$ 上的图象如图所示.

(1) 在平面直角坐标系中补全函数 y=f(x)的图象;

(2) 解不等式 $x^3[f(x)-f(-x)]>0$.

14. 设函数 f(x)的定义域为 R,对任意实数 x, y 都有 f(x+y)=f(x)+f(y), 当 x>0 时,f(x)<0 且 f(3)=-4.

(1) 求证: f(x)为奇函数;

(2) 在区间[-9,9]上,求 f(x)的最值.

★15. 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,恒有 f(x+2) = -f(x). 当 $x \in [0,2]$ 时, $f(x) = 2x - x^2$.

(1)求证: f(x)是周期函数;

(2)当x∈[2,4]时,求f(x)的解析式.