
13.2 磁感应强度 磁通量

班级:	姓名:	学号:	授课日期:
本课在课程标准中的	表述:知道磁通量.		
[学习目标]			
1.理解磁感应强度的概	死念 ,知道磁感应强度	是描述磁场强弱和方向的	的物理量.
2.知道什么是匀强磁均	汤 ,知道匀强磁场磁感	线的特点.	
3.理解磁通量的概念,	会计算磁通量的大小	٠.	
[课前预习]			
一、磁感应强度			
1. 电流元: 很短一段	过通电导线中的电流 <i>I</i> -	与导线长度 <i>l</i> 的乘积 <i>Il</i> .	
2. 定义:一段通电直	[导线放在磁场中F	所受的力与导线中的电流	和导线的长度的的比值,叫作磁感
应强度.			
3. 定义式: $B=\frac{F}{II}$			
4. 单位: _, 简称_,	符号为 T.		
5. 磁感应强度是表征	E磁场_的物理量.		
6. 磁感应强度是矢量	力,它的方向就是该处	小磁针静止时_所指的方[向.
二、匀强磁场			
1. 概念: 各点的磁感	萨应强度的_相等、_相	同的磁场.	
2. 磁感线特点: 匀强	磁场的磁感线是间隔	_的平行直线.	
三、磁通量			
1. 定义: 匀强磁场中	·和与磁场方向_的 ⁻	$^{\rm Z}$ 面面积 $^{\rm S}$ 的乘积.即 $^{oldsymbol{\sigma}=}$	=BS.
2. 拓展: 磁场与平面	「不垂直时,这个面在	垂直于磁场方向的与磁	x感应强度 B 的乘积表示磁通量.
3. 单位: 国际单位是	:_, 简称韦, 符号是 \	Wb, 1 Wb=	
4. 引申: $B = \frac{\Phi}{S}$, 表表	示磁感应强度的大小等	于穿过垂直磁场方向的单	单位面积的磁通量.
即学即用			
1. 判断下列说法的正	误.		
(1)磁感应强度是矢量	,磁感应强度的方向。	就是磁场的方向.()	
(2)磁感应强度的方向	与小磁针在任何情况	FN 极受力的方向都相同	l. ()
(3)通电导线在磁场中	受到的磁场力为零,原	则说明该处的磁感应强度	为零. ()
(4)磁感应强度的大小	与电流成反比,与其实	受到的磁场力成正比. ()
(5)穿过某一面积的磁	通量为零,该处磁感原	应强度一定为零. ()	
2. 在匀强磁场中,一	导线垂直于磁场方向	放置,导线长度为 0.1 m	,导线中电流为5A,若导线受到的磁
场力大小为 0.28 N, 5	则磁感应强度大小为_	T.	

[课堂学习]

一、磁感应强度

【导学探究】 在利用如图所示装置进行"探究影响通电导线受力的因素"的实验时,我们更换磁性强弱不同的磁体,按实验步骤完成以下实验探究: 保持 I 与 I 不变,按磁性从弱到强改换磁体,观察悬线摆动的角度变化,发

现磁体磁性越强,悬线摆动的角度越大,表示通电导线受的力越______,力F与II的比值越____

即 B 越 , 这表示 B 能反映磁场的 .

【知识深化】

- 1. 磁感应强度的定义式 $B = \frac{F}{II}$ 也适用于非匀强磁场,这时 I 应很短,II 称为"电流元",相当于静电场中的"试探电荷"。
- 2. 磁感应强度是反映磁场强弱的物理量,它是用比值定义法定义的物理量,由磁场自身决定,与是否引入电流元、引入的电流元是否受力及受力大小无关.
- 3. 磁感应强度的方向可以有以下几种表述方式:
- (1)小磁针静止时 N 极所指的方向,即 N 极受力的方向.
- (2)小磁针静止时 S 极所指的反方向,即 S 极受力的反方向.
- (3)磁感应强度的方向就是该点的磁场方向.

[深度思考] 磁感应强度的定义式 $B=\frac{F}{ll}$ 是否在任何时候都成立,而与导线放置方式无关?

例 1: 关于磁感应强度,下列说法中正确的是()

- A. 由 $B = \frac{F}{n}$ 可知,B 与 F成正比,与 II成反比
- B. 通电导线放在磁场中的某点, 那点就有磁感应强度, 如果将通电导线拿走, 那点的磁感应强度就为零
- C. 通电导线所受磁场力不为零的地方一定存在磁场,通电导线不受磁场力的地方一定不存在磁场
- D. 磁场中某一点的磁感应强度由磁场本身决定,其大小和方向是唯一确定的,与是否放入通电导线无关 【知识深化】
- 1. 在定义式 $\mathbf{B} = \frac{\mathbf{F}}{\mathbf{I}\mathbf{I}}$ 中,通电导线必须垂直于磁场方向放置. 因为磁场中某点通电导线受力的大小,除和磁场强弱有关以外,还和导线的方向有关,导线放入磁场中的方向不同,所受磁场力一般不同.
- 2. B的大小与 F、I、I 无关: 通电导线受力为零的地方,磁感应强度 B 的大小不一定为零,可能是由于电流方向与 B 的方向在一条直线上.

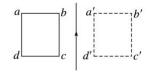
例 2:磁场中放一根与磁场方向垂直的通电导线,通过它的电流是 $2.5\,\mathrm{A}$,导线长 $1\,\mathrm{cm}$,它受到的磁场力为 $5.0\,10^{-2}\,\mathrm{N}$. 求:

- (1)这个位置的磁感应强度大小;
- (2)当把通电导线中的电流增大到5A时,这一位置的磁感应强度大小.

针对训练 1:在竖直向上的匀强磁场中某处 P 放一根长度 L=0.2 m,通电电流 I=0.5 A 的直导线,测得它受到的最大磁场力 F=1.0 N,现将该通电导线从磁场中撤走,则 P 处的磁感应强度为()

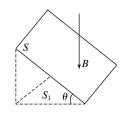
A. 零

B. 10 T, 方向竖直向上

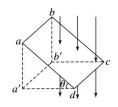

C. 0.1 T, 方向竖直向下

D. 10 T, 方向肯定不是竖直向上

二、磁通量


【导学探究】如图所示,一矩形线框从 abcd 位置移动到 a'b'c'd'位置的过程中(线框平行于纸面移动,线框与导线相互绝缘),中间是一条电流向上的通电导线,请思考:

- (1)导线的左边磁场的方向向哪?右边呢?
- (2)在移动过程中,当线框的一半恰好通过导线时,穿过线框的磁感线条数有何特点?

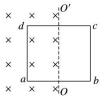


【知识深化】

- 1. 磁通量的计算
- (1)公式: $\Phi = BS$. 适用条件: ①匀强磁场; ②磁感线与平面垂直.
- (2)若磁感线与平面不垂直,则 $\Phi = BS\cos\theta$.其中 $S\cos\theta$ 为面积 S 在垂直于磁感线方向上的投影面积 S_1 ,如图所示.

- 2. 磁通量的正、负
- (1)磁通量是标量,但有正、负,当磁感线从某一面穿入时,磁通量为正值,则磁感线从此面穿出时磁通量为负值.
- (2)若磁感线沿相反方向穿过同一平面,且正向磁通量为 $m{\phi}_1$,反向磁通量为 $m{\phi}_2$,则穿过该平面的磁通量 $m{\phi}$ $=m{\phi}_1-m{\phi}_2$.
- 3. 磁通量的变化量
- (1)当 B 不变,有效面积 S 变化时, $\Delta \Phi = B \cdot \Delta S(B \setminus S)$ 相互垂直时)
- (2)当 B 变化,S 不变时, $\Delta \Phi = \Delta B \cdot S \cdot (B \setminus S)$ 相互垂直时)
- (3)*B* 和 *S* 同时变化, $\Delta \Phi = \Phi_2 \Phi_1$.
- 4. 磁通量可用穿过某一平面的磁感线条数表示. 若有磁感线沿相反方向穿过同一平面,则磁通量等于穿过该平面的磁感线的净条数(磁通量的代数和).
- 例 3: 如图所示,线圈平面与水平方向夹角 θ =60°,磁感线竖直向下,线圈平面面积 S=0.4 m²,匀强磁场磁感应强度 B=0.6 T,则:

- (1) 穿过线圈的磁通量 ϕ 为多少?把线圈以cd为轴顺时针转过 120° 角,则通过线圈磁通量的变化量大小为多少?
- (2)若 θ =90°,穿过线圈的磁通量为多少? 当 θ 为多大时,穿过线圈的磁通量最大?


针对训练 2: 如图所示,正方形线圈 abcd 位于纸面内,边长为 L,匝数为 N,过 ab 中点和 cd 中点的连线 OO' 恰好位于垂直纸面向里的匀强磁场的右边界上,匀强磁场的磁感应强度为 B,穿过线圈的磁通量为 Φ ,若线圈绕 OO' 轴转过 60° 的过程中,磁通量的变化量为 $\Delta\Phi$,则 Φ 和 $\Delta\Phi$ 的大小分别为()

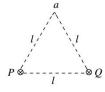
A.
$$\frac{BL^2}{2}$$
, $\frac{BL^2}{4}$

$$B.\frac{NBL^2}{2}, \frac{NBL^2}{4}$$

C.
$$BL^2$$
, $\frac{BL^2}{2}$

D.
$$NBL^2$$
, $\frac{NBL^2}{2}$

三、磁感应强度矢量的叠加

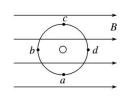

磁感应强度是矢量,当空间存在几个磁体(或电流)时,每一点的磁场等于各个磁体(或电流)在该点产生磁场的矢量和.磁感应强度叠加时遵循平行四边形定则.

例 4 如图,在磁感应强度大小为 B_0 的匀强磁场中,两长直导线 P 和 Q 垂直于纸面固定放置,两者之间的 距离为 l.在两导线中均通有方向垂直于纸面向里的电流 I 时,纸面内与两导线距离均为 l 的 a 点处的磁感应强度为零,如果让 P 中的电流反向、其他条件不变,则 a 点处磁感应强度的大小为()

$$B.\frac{\sqrt{3}}{3}B_0$$

$$C.\frac{2\sqrt{3}}{3}B_0$$

D.
$$2B_0$$



【知识深化】磁场叠加问题的解题思路

- 1. 应用安培定则判断各电流在某点分别产生的磁感应强度的方向(过该点磁感线的切线方向,即与点和导线的连线垂直).
- 2. 根据平行四边形定则,利用合成法或正交分解法进行合成,求得合磁感应强度.

针对训练 3 如图所示,一根通电直导线垂直放在磁感应强度为 1 T 的匀强磁场中,以导线为中心、R 为 半径的圆周上有 a、b、c、d 四个点,已知 c 点的实际磁感应强度为 0,则下列说法正确的是()

- A. 直导线中电流方向垂直纸面向里
- B. a 点的磁感应强度为 $\sqrt{2}$ T,方向向右
- C. b 点的磁感应强度为 $\sqrt{2}$ T, 方向斜向下, 与匀强磁场方向成 45°角
- D. d点的磁感应强度为 0

[课后作业]	完成课后作业
[课后感悟]	