11.2 导体的电阻

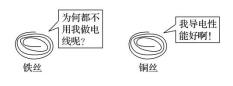
班级:	姓名:	学号:	授课日期:
本课在课程标准中的表	泛述: 观察并能识别常	见的电路元器件,了解它	它们在电路中的作用.
[学习目标]			
1.理解电阻的定义,进	一步体会比值定义法.		
2.会利用欧姆定律分析	电流、电压与电阻之间	间的关系.	
3.掌握电阻定律,知道	影响电阻率大小的因为	表 於 .	
4.能根据 $I-U$ 图像或	U-I 图像求导体的电影	阻.	
[课前预习]			
一、电阻			
1. 定义: 导体两端	与通过导体的_	之比.	
2. 公式: $R = \frac{U}{I}$.			
3. 物理意义: 反映了	导体对电流的	作用.	
4. 在导体的 <i>U-I</i> 图像	象中,斜率反映了	·	
二、影响导体电阻的因	素		
为探究导体电阻是否与	5导体长度	和材料有关,我们采	用法进行实验探究.
三、导体的电阻率			
1. 电阻定律			
` '	$}$ 体,其电阻 R 与它的	J成正比,与它的_	成反比;导体电阻还与构成它的
有关.			
(2)公式: $R=\rho \frac{l}{S}$, 式中	ho是比例系数, $ ho$ 叫作 i	这种材料的电阻率.	
2. 电阻率			
(1)电阻率是反映导体_	性能好場	不的物理量.	
(2)影响电阻率的两个团			
(3)纯金属电阻率较_			, 合金的电阻率
			为电阻通常远大于导线电阻,一般情况 可电阻通常远大于导线电阻,一般情况
下,可认为导线电阻为			
3. 超导现象			
一些金属在温度特别低	氏时电阻可以降到		,这种现象叫作
超导现象.			
即学即用			
1. 判断下列说法的正	误.		
(1)由 $R = \frac{U}{I}$ 可知,导体	的电阻跟导体两端的电	电压成正比,跟导体中的]电流成反比. ()
(2)导体的电阻由导体之	卜 身的性质决定,跟导	体两端的电压及流过导位	本的电流的大小无关.()
(3) 由 $R = \rho \frac{1}{S}$ 知,材料标	目同的两段导体,长度	大的导体的电阻一定比较	长度小的导体的电阻大.()
(4)把一根长导线截成等	等长的三段,则每段的	电阻率都不变. ()	
(5)电阻率是反映材料导	异电性能好坏的物理量	,电阻率越大的导体导	电性能越差.()
2. 一根阻值为 R 的均	匀电阻丝,均匀拉长至	至原来的2倍,电阻变为	

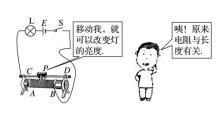
[课堂学习]

一、电阻

【导学探究】

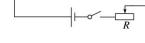
- 1. 如图所示的图像为金属导体 $A \times B$ 的 U-I 图像,思考:
- (1) 对导体 A(或导体 B)来说,电流与它两端的电压有什么关系? U与 I 的比值怎样?
- (2) 对导体 $A \times B$,在电压 U 相同时,谁的电流小?谁对电流的阻碍作用大?
- (2)电压相同时,A的电流小,说明A对电流的阻碍作用大.


【知识深化】


- 1. $R = \frac{U}{I}$ 是电阻的定义式,反映了导体对电流的阻碍作用,其大小由导体本身的性质决定,与导体两端是否加电压,导体中是否有电流无关.
- 2. $I = \frac{U}{R}$ 是欧姆定律的数学表达式,表示通过导体的电流 I 与电压 U 成正比,与电阻 R 成反比,适用条件是金属或电解质溶液导电(纯电阻电路).
- 例 2: 由欧姆定律 $I = \frac{U}{R}$ 导出 U = IR 和 $R = \frac{U}{I}$,下列叙述中不正确的是()
- A. 导体的电阻跟导体两端的电压成正比, 跟导体中的电流成反比
- B. 导体的电阻由导体本身的性质决定, 跟导体两端的电压及流过导体的电流的大小无关
- C. 对确定的导体, 其两端电压和流过它的电流的比值就是它的电阻值
- D. 一定的电流流过导体, 电阻越大, 其电压越大

二、电阻定律 电阻率

【导学探究】


1. 根据图猜想导体电阻大小与哪些因素有关?

- 2. 探究多个变量之间关系的方法是什么?
- 3. 实验探究: 如图所示,a、b、c、d 是四条不同的金属导体. 导体 b、c、d 在长度、横截面积、材料三个因素方面,分别只有一个因素与导体 a 不同. 下表所示为四个串联导体的各方面因素关系及导体两端的电压关系.

- ①对比导体 a 和 b 说明什么?
- ②对比导体 a 和 c 说明什么?
- ③对比导体 a 和 d 说明什么?

三个因素及电压不同导体	长度	横截面积	 材料 	电压
а	l	S	铁	U
b	21	S	铁	2U
С	l	2.5	铁	$\frac{U}{2}$
d	l	S	镍铜合金	5U

【知识深化】

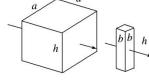
1. 电阻决定式 $R=\rho$ $\frac{1}{S}$

l是导体的长度,S是导体的横截面积, ρ 是比例系数,与导体材料有关,叫作电阻率.

- 2. 电阻率
- (1)电阻率是一个反映导体材料导电性能的物理量,是导体材料本身的属性,与导体的形状、大小无关.
- (2)电阻率与温度的关系及应用
- ①金属的电阻率随温度的升高而增大,可用于制作电阻温度计.
- ②大部分半导体的电阻率随温度的升高而减小,半导体的电阻率随温度的变化较大,可用于制作热敏电阻.
- ③有些合金, 电阻率几乎不受温度变化的影响, 常用来制作标准电阻.
- ④一些导体在温度特别低时电阻率可以降到零,这个现象叫作超导现象.
- 3. $R = \frac{U}{I}$ 与 $R = \rho$ $\frac{1}{S}$ 的联系与区别

两个公式 区别与联系	定义式: $R = \frac{U}{I}$	决定式: $R=\rho \frac{l}{S}$
区别	适用于纯电阻元件	适用于粗细均匀的金属导体或浓度均匀的电解液、等离子体
联系	$R= horac{l}{S}$ 是对 $R=rac{U}{I}$ 的进一步说明,即导体的电阻与 U 和 I 无关,而是取决于导体本身的材料、长度和横截面积	

例 3: 下列关于电阻率的说法中,错误的是()


- A. 电阻率只是一个比例常数,与任何其他因素无关
- B. 电阻率反映材料导电性能的好坏, 所以与材料有关
- C. 电阻率与导体的温度有关
- D. 电阻率在国际单位制中的单位是欧姆米

例 4: 如图所示,有两个同种材料制成的导体,两导体横截面均为正方形的柱体,柱体高均为 h,大柱体截面边长为 a,小柱体截面边长为 b,则() a

- A. 从图示电流方向看,大、小柱体电阻之比为a:b
- B. 从图示电流方向看,大、小柱体电阻之比为1:1
- C. 若电流方向竖直向下,大、小柱体的电阻之比为a:b
- D. 若电流方向竖直向下,大、小柱体的电阻之比为 $a^2:b^2$.

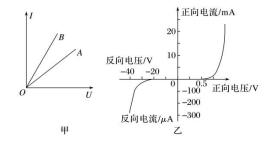
三、导体的伏安特性曲线

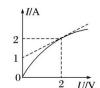
1. 伏安特性曲线: 用纵坐标表示电流 I,用横坐标表示电压 U,这样画出的导体的 I-U 图像叫作导体的 伏安特性曲线.

2. 线性元件和非线性元件

- (1)线性元件: 伏安特性曲线是一条过原点的直线,欧姆定律适用的元件,如金属导体、电解质溶液.
- (2)非线性元件: 伏安特性曲线是一条曲线, 欧姆定律不适用的元件. 如气态导体和半导体元件.

图线 比较内容	I-U 图线	<i>U-I</i> 图线	
坐标轴	横坐标表示电压 U 、纵坐标表示电流 I	横坐标表示电流 1、纵坐标表示电压 U	
斜率	图线上的点与坐标原点连线的斜率表 示导体电阻的倒数	图线上的点与坐标原点连线的斜率表 示导体的电阻	
线性元件图线 的形状	$O \xrightarrow{I} R_2$ $R_1 > R_2$	$O \xrightarrow{I} R_1$ $R_1 \leq R_2$	
非线性元件图 线的形状	0 1 1 1 1 1 1 1	O O O O O O O O O O	


例 5: 某学习小组描绘了三种电学元件的伏安特性曲线,如图甲、乙所示,则()



- B. 图甲中, 两电学元件阻值的关系为 $R_B > R_A$
- C. 图乙中, 电学元件为线性元件
- D. 图乙中, 电学元件所加正向电压大于 0.75 V, 其阻值随电压的增大而减小

例 6: 如图所示,为某一金属导体的伏安特性曲线,由图像可知()

- A. 该导体的电阻随电压的升高而不变
- B. 该导体的电阻随电压的升高而减小
- C. 导体两端电压为2V时, 电阻为0.5Ω
- D. 导体两端电压为 2 V 时, 电阻为 1 Ω

[课后作业] 完成课后作业

[课后感悟]_