2023-2024 年度第二学期期中调研试题

高一数学

	考试时间:	120 分钟 满分 15	0分		
一、单选题:本题8小题,每题5分,共40分。					
1. 复数 $z = i(-1+i)$,其中 i 为虚数单位,则复数 z 的虚部是()					
A. 1	B1	C. <i>i</i>	D. $-i$		
2. 己知向量 $\vec{a} = (1, -1), \vec{b} = (-1, 3), 则 \vec{a} \cdot (2 \vec{a} - \vec{b}) = ($					
A. 2	В8	C. 8	D. -2		
3. 式子 $\sin 25^{\circ} \cos 35^{\circ} - \cos 155^{\circ} \cos 55^{\circ} = ($)					
A. $\frac{1}{2}$	B. $\frac{\sqrt{3}}{2}$	C. $-\frac{1}{2}$	D. $-\frac{\sqrt{3}}{2}$		
4. 设函数 $f(x) = 3^x + 2x - 4$ 的零点为 x_0 , 则 $x_0 \in ($					
A. $(-1,0)$	в. (0,1)	c. $(1,2)$	D. (2,3)		
5. 若 $\alpha \in (0, \frac{\pi}{2})$,且 $\cos (\alpha + \frac{\pi}{6}) = \frac{1}{3}$,则 $\sin \alpha$ 的值为(
A. $\frac{\sqrt{6}+2}{6}$	B. $\frac{\sqrt{6}-2}{6}$	C. $\frac{2\sqrt{6}-1}{6}$	D. $\frac{1+2\sqrt{6}}{6}$		
6. 瑞士数学家莱昂哈德·欧拉于1748年提出了著名的公式: $e^{ix} = \cos x + i \sin x$, 其中 e 是					
自然对数的底数,i是虚数单位,该公式被称为欧拉公式,它将指数函数的定义域扩大到					
复数,建立了三角函数和指数函数的关系,在复变函数论中占有非常重要的地位,被誉					
为"数学中的天桥".根据欧拉公式, $ e^{2i}-1 =($					
A. cos2	B. sin2	C. 2cos1	D. 2sin1		
7. 在 \triangle ABC 中,角 A, B, C 所对的边分别为 a , b , c ,若 $\frac{b-c\cos A}{a-c\cos B} = \frac{\sin B}{\sin A}$,则 \triangle ABC 的形					
状是 ()					
A. 等腰或直角三	角形	B. 直角三角形			
C. 等腰直角三角	形	D. 等腰三角形			

8. 已知四边形 <i>ABCD</i> 中, <i>AC</i> .	$LBD, AB = BC = \frac{BD}{2}$	$\frac{C}{C} = 2$, $AC = CD = 2\sqrt{3}$,点 E 在四边形
$ABCD$ 的四条边上运动,则 \overline{EC}	$\vec{\cdot} \cdot \vec{ED}$ 的最大值是()
A. 4 B. 0	C. -3	D4
二、多选题:本题共 3 小题, 得 6 分,部分选对得部分分。	每小题 6 分,共 18 分	分。在每小题给出的选项中,全部写对的
9. 下列式子中值为√3的为()	
A. $\tan \frac{2024\pi}{3}$	B. sin 15	5° + cos 15°
C. 1+tan15° 1-tan15°	D. tan103	3° – tan 43° – $\sqrt{3}$ tan 103° tan 43°
10. 设点 M 是△ABC 所在平面 P	n一点,则下列说法正	E确的是()
A. 若 $\overrightarrow{AM} = 2\overrightarrow{AC} - 3\overrightarrow{AB}$,	则点 M 、 B 、 C 三点共线	£
B. 若 $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BC}$,则 \overrightarrow{AM}	$= \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$	
C. 若点M是△ABC 的重心	,则 $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}$	$=\vec{0}$
D. 若 $\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$ 且	$x + y = \frac{1}{4}$,则△ABC É	的面积是 $\triangle MBC$ 面积的 $\frac{4}{3}$
	<i>4, B, C</i> 的对应边分别	則为 a , b , c , 且 $\angle C = \frac{\pi}{3}$, $c = 2$. 则
下列结论正确的是()	D	→ → → か取焦芸国头(0.4)
A. bcos A + acos B = 1		$\overrightarrow{AC} \cdot \overrightarrow{AB}$ 的取值范围为 $(0,4)$
C. △ABC 的面积最大值为	D.	$\frac{\cos B}{\cos A}$ 的取值范围为 $(0,+\infty)$
三、填空题:本题共3小题,	每小题 5 分, 共 15 分	分。
12. 复数1 – 2i与复数3 – i在2	夏平面内对应的点分别	则为 A 、 B ,若 O 为坐标原点,则 $\angle AOB$ 的
大小为		
13. 已知向量 \vec{a} 与 \vec{b} 的夹角为	$ \vec{a} = 5$, $ \vec{a} = 5$, $ \vec{b} = 1$	$(3,4)$,则 \vec{a} 在 \vec{b} 上的投影向量的坐标
为		
14. 设 $\vec{a} = (\sin x, -\sin x), \vec{b} =$		$Qf(x) = \vec{a} \cdot \vec{b} + m$ 在区间($\frac{\pi}{6}$, $\frac{5\pi}{6}$)上有三个
零点,则实数 m 的取值范围为	12	_•

四、解答题:本题共5小题,共77分。解答题应写出文字说明、证明过程或演算步骤。

15. (13 分) 已知向量 \vec{a} , \vec{b} , \vec{c} 是同一平面内的三个向量,其中 \vec{a} = (1,-1).

- (1)若 $|\vec{c}| = 2\sqrt{2}$,且 $\vec{c}//\vec{a}$,求向量 \vec{c} 的坐标;
- (2)若 \vec{b} 是单位向量,且 $\vec{a} \perp (\vec{a} + 2\vec{b})$,求 $\vec{a} = \vec{b}$ 的夹角 θ .

- 16. (15 分) 已知复数 $z = bi(b \in R)$, $\frac{z+1}{1-i}$ 是实数.
- (1)求复数z;
- (2)若复数 $(m-3z)^2-8m$ 在复平面内所表示的点在第三象限,求实数m的取值范围.

17. (15 分) (1) 已知
$$\tan\left(\frac{\pi}{4} - \alpha\right) = \frac{1}{3}$$
, $\alpha \in \left(0, \frac{\pi}{4}\right)$, $\beta \in \left(0, \frac{\pi}{2}\right)$, $\sin \beta = \frac{\sqrt{10}}{10}$,

求 $\alpha+\beta$ 的值.

(2) 向量 $\overrightarrow{m} = (2\sin x, \sqrt{3})$, $\overrightarrow{n} = (\cos x, \cos 2x)$,已知函数 $f(x) = \overrightarrow{m} \cdot \overrightarrow{n}$, \triangle ABC 的内角A, B, C 的对边分别为a, b, c,其中a = 7,若锐角A满足 $f\left(\frac{A}{2} - \frac{\pi}{6}\right) = \sqrt{3}$,且 $\sin B + \sin C = \frac{13\sqrt{3}}{14}$,求b + c的值.

18. (17 分) 在△ABC中,内角 A, B, C所对的边分别为 a, b, c,

$$\mathbb{H} b \sin \frac{B+C}{2} = a \sin B.$$

- (1) 求 A 角的值;
- (2) 若 \triangle ABC 为锐角三角形,利用(1)所求的 A 角值求 $\frac{a-c}{b}$ 的取值范围.

19. (17 分) 若函数 $f(x) = a \sin x + b \cos x$, 则称向量 $\vec{p} = (a,b)$ 为函数 f(x) 的特征向量,函数 f(x) 为向量 \vec{p} 的特征函数.

(1) 若函数
$$f_1(x) = \sin(\pi - x) + \sin(\frac{3}{2}\pi - x)$$
,求 $f_1(x)$ 的特征向量 \vec{p}_1 ;

(2) 若向量
$$\overrightarrow{p_2} = \left(\sqrt{3},1\right)$$
 特征函数为 $f_2(x)$, 求当 $f_2(x) = \frac{6}{5}$,且 $x \in \left(-\frac{\pi}{6},\frac{\pi}{3}\right)$ 时 $\sin x$ 的值;

(3) 已知点
$$A(-3,3)$$
, $B(3,11)$, 设向量 $\overrightarrow{p_3} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ 的特征函数为 $f_3(x)$, 函数

 $h(x) = 4f_3^2(x) - 2$. 在函数 h(x) 的图象上是否存在点 Q, 使得 $\overrightarrow{AQ} \perp \overrightarrow{BQ}$? 如果存在,求出点 Q 的坐标; 如果不存在,请说明理由.