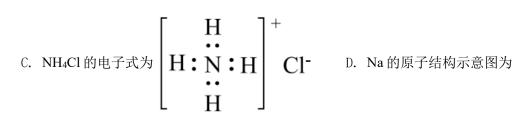
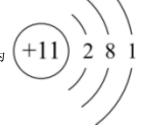
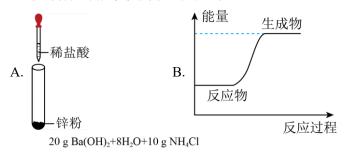
2022-2023 学年高一化学期中综合练习(二)


2023.4.17

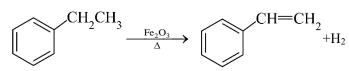

可能用到的相对原子质量: H1 C12 N14 O16 Fe 56 S32 Cl 35.5 Cu 64

一、单项选择题


- 1. 硅是极为常见的一种元素,下列关于硅及其化合物的说法中不正确的是
- A. 芯片与太阳能电池感光板所用材料均为晶体硅
- B. 碳化硅俗称金刚砂,可用作耐高温半导体材料
- C. 石英砂可用于生产玻璃
- D. 硅元素在自然界主要以单质硅和二氧化硅形式存在
- 2. 侯氏制碱法主要反应原理: NH₃+NaCl+CO₂+H₂O=NaHCO₃↓+NH₄Cl。下列有关说法不正确的是
- A. CO₂结构式为 O=C=O

B. NaCl为离子化合物

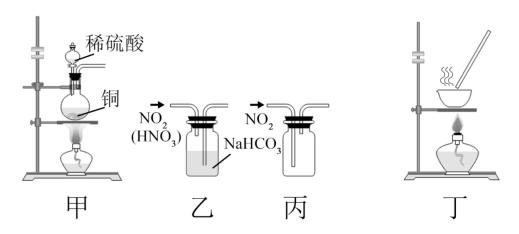
3. 下列各图中所涉及为放热反应的是



化学键断裂过程

4. 工业上可由乙苯生产苯乙烯:

下列说法正确的是


- A. 该反应的类型为加成反应
- B. 乙苯的同分异构体共有三种

- C. 可用 Br₂/CCl₄ 鉴别乙苯和苯乙烯 D. 乙苯和苯乙烯分子内共平面的碳原子数最多为 7
- 5. 室温下,下列各组离子能大量共存的是
- A. NH_4^+ , MnO_4^- , Cl^- , SO_3^{2-}

B. Fe^{2+} , NH_4^+ , Cl^- , NO_3^-

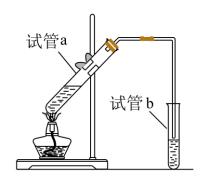
C. Fe³⁺, Ba²⁺, NO_3^- , SO_4^{2-}

- D. H^+ , K^+ , S^2 , NO_3^-
- 6. 能通过化学反应使溴水褪色,又能使高锰酸钾溶液褪色的是
- A. 苯
- B. 乙烷
- C. 甲烷
- D. 丙烯
- 7. 下列装置用于实验室制 NO2并回收硝酸铜,能达到实验目的的是

- A. 用装置甲制取 NO₂ B. 用装置乙除 NO₂中的少量 HNO₃
- C. 用装置丙收集 NO₂ D. 用装置丁蒸干 Cu(NO₃)₂溶液制 Cu(NO₃)₂·6H₂O
- 8. 下列过程在该条件下能一步实现的是
- B. $NH_3 \cdot H_2O \xrightarrow{\hspace*{1cm} / \hspace*{1cm} / \hspace*{1cm}$
- C. 稀盐酸 $\xrightarrow{MnO_2}$ Cl₂ $\xrightarrow{T ilde{x} ilde{y}}$ 漂白粉
- D. $CaCl_2(aq) \xrightarrow{CO_2} CaCO_3 \xrightarrow{SiO_2} CaSiO_3$
- 9. 以下反应可表示获得乙醇并用作汽车燃料的过程,下列有关说法正确
- $\bigcirc 16CO_2(g) + 6H_2O(1) = C_6H_{12}O_6(s) + 6O_2(g)$ $\triangle H_1$
- $(2)C_6H_{12}O_6(s)=2C_2H_5OH(1)+2CO_2(g)$ ΔH_2
- $3C_2H_5OH(1)+3O_2(g)=2CO_2(g)+3H_2O(1)$ ΔH_3
- A. $2\Delta H_3 = -\Delta H_1 \Delta H_2$
- B. 植物的光合作用通过反应①将热能转化为化学能
- C. 在不同油耗汽车中发生反应③, ΔH₃会不同
- D. 若反应①生成 1.12 LO_2 ,则转移的电子数为 $0.2 \times 6.02 \times 10^{23}$

- 10. 下列离子方程式书写正确的是
- A. 将少量 SO₂ 通入饱和 NaHCO₃ 溶液中: H⁺+ HCO₃ =H₂O+CO₂↑
- B. 向氯水中通入少量 SO_2 : $Cl_2+SO_2+2H_2O=2H^++2HCl+SO_4^2$
- C. 向莫尔盐[(NH₄)₂Fe(SO₄)₂·6H₂O]溶液中加入过量氢氧化钠溶液: NH_4^+ +Fe²⁺+3OH=NH₃·H₂O+Fe(OH)₂↓
- D. 硫化亚铁与稀硫酸混合: 2H++FeS=H₂S↑+Fe²⁺
- 11. X、Y、Z、M、N是元素周期表中的短周期主族元素,且原子序数依次递增。X原子的最外层电子数是电子层数的 2 倍,Y与 M同主族,且 M的原子序数是 Y的 2 倍,Z是短周期中金属性最强的元素。下列说法正确的
- A. 简单离子的半径: Y<Z
- B. 简单气态氢化物的热稳定性: Y<M
- C. 最高价氧化物对应水化物的酸性: M>N
- D. 固态 XY₂ 转变为气态,需克服分子间作用力
- 12. 根据下列实验操作和现象所得到的结论正确的是

	实验操作和现象	实验结论
A	棉花上滴入浓硫酸,棉花发黑	浓硫酸具有吸水性
В	用铂丝蘸取某溶液进行焰色反应,火焰呈黄色	溶液中一定含 Na ⁺
С	取等物质的量的 Al 和 Fe, 分别与足量的盐酸反应, Al 产生的氢气多	金属性: Al>Fe
D	将 SO ₂ 通入酸性 KMnO ₄ 溶液,溶液褪色	SO ₂ 具有漂白性


A. A

В. В

C. C

D. D

13. 实验室乙酸乙酯的制备实验如图所示,试管 a 中盛有无水乙醇、浓硫酸、冰醋酸及沸石,试管 b 中盛有滴有酚酞的饱和碳酸钠溶液。下列关于该实验说法不正确的是

A. 试管 a 中放入沸石的目的是防止加热时液体暴沸

- B. 导管不伸入试管 b 中液面以下, 其目的是防止倒吸
- C. 试管 b 中溶液红色变浅,是因为碳酸钠与乙醇发生反应
- D. 用分液漏斗分离试管 b 中液体时,应先放出水相后再从分液漏斗上口倒出乙酸乙酯
- 14. 某科研小组成功研制出能在"数分钟之内"将电量充满的锂电池,其成本只有传统锂电池的一半。他们把锂锰氧化物(LMO)浸泡在石墨里面,使其变成一个可以导电的密集网络的负极材料,与电解质和正极材料(石墨)构成可充电电池。若电解液为 Li Al Cl₄-SOCl₂,电池的总反应为:

下列说法正确的是

- A. 电池的电解液可为 LiCl 水溶液
- B. 放电时负极反应式为: Li-e-+ Cl-=LiCl
- C. 放电时正极反应式为: 2SOC1₂+4 e = 4C1 + S+SO₂
- D. 放电时电子从负极经外电路流向正极,再从正极经电解质流向负极
- 15. 对利用甲烷消除 NO_2 污染进行研究, $CH_4+2NO_2 \Rightarrow N_2+CO_2+2H_2O$ 。在 2 L 密闭容器中,控制不同温度,分别加入 0.50 mol CH_4 和 1.2 mol NO_2 ,测得 n (CH_4) 随时间变化的有关实验数据见下表。下列说法正确的是

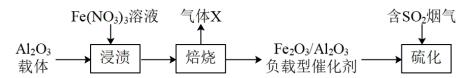
()

组别	温度	时间/min (n/mol)	0	10	20	40	50
1)	T_1	n (CH ₄)	0.50	0.35	0. 25	0.10	0.10
2	T_2	n (CH ₄)	0.50	0.30	0.18		0 15

- A. 组别 1 中, 0-20min 内, NO₂的降解速率为 0.025mo1 L⁻¹ min⁻¹
- B. 由实验数据可知实验控制的温度 T₁>T₂
- C. 40min 时,表格中 T2对应反应已经达到平衡状态
- D. 0~10min 内, CH4的降解速率①>②

二、非选择题

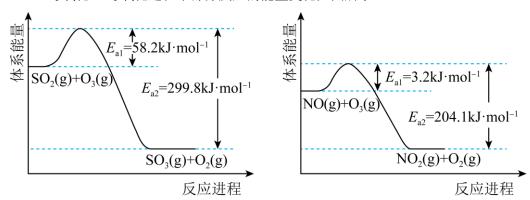
16. X,	Y、Z是三种短周期元素。	已知三种元素的原子序数按 X	, Y.	、Z 的顺序依次增大,	且原子序数之和
为 33,	最外层电子数之和为11。	在周期表中, X、Z 上下相邻,	Υ,	Z左右相邻。	


(1)X	Υ,	Z的元素符号	·分别为	•	•	0

(2)Y 的氧化物是 性氧化	化物。
----------------	-----

- (3)X 和 Z 分别能与氧形成 XO₂ 和 ZO₂, XO₂ 在固态时属于______晶体, ZO₂ 在固态时属于______晶体。
- (4)分别写出 X、Y、Z 的最高价氧化物与氢氧化钠溶液反应的离子方程式:______

17.A 与 B 反应生成 C,假定反应由 A、B 开始,它们的起始浓度均为 1 mol/L。反应进行 2 min 后 A 的浓度为 0.8 mol/lLB 的浓度为 0.6 mol/L,C 的浓度为 0.1 mol/L。


- (1) 2min 内反应的平均速率 v(A) = , v(B) = , v(C) =
- (2) 三者数值之间的关系是 v(A) = v(B) = v(C)。
- (3) 该反应的化学方程式为。
- 18. Fe_2O_3/Al_2O_3 负载型催化剂(其中 Fe_2O_3 为催化剂, Al_2O_3 为载体)可用于脱除烟气中的 SO_2 ,该负载型催化剂的制备和 SO_2 的脱除过程如下:

- (1) 浸渍。常温下,用 $Fe(NO_3)_3$ 酸性溶液浸渍 Al_2O_3 载体 6h。浸渍所得溶液中除 Fe^{3+} 外,含有的阳离子还有_____(填化学式)。
- (2) 焙烧。将浸渍所得混合物烘干后,在 500°C焙烧 12h,制得 Fe_2O_3/Al_2O_3 负载型催化剂。准确称取 2.000g 负载型催化剂样品,置于 250mL 锥形瓶中,加入适量稀盐酸,加热溶解后,滴加稍过量的 $SnCl_2$ 溶液(Sn^{2+} 将 Fe^{3+} 还原为 Fe^{2+}),充分反应后,除去过量的 Sn^{2+} 。用 5.000×10⁻²mol·L⁻¹ $K_2C_2O_7$ 溶液滴定至终点(滴定过程中 $Cr_2O_7^{2-}$ 与 Fe^{2+} 反应生成 Cr^{3+} 和 Fe^{3+}),消耗 $K_2Cr_2O_7$ 溶液 12.00mL。计算该 Fe_2O_3/Al_2O_3 负载型 催化剂的负载量_____(写出计算过程)。[负载量= 催化剂质量 催化剂质量 × 100%]
- (3) 硫化。400℃时,将一定比例 SO_2 和 H_2 的混合气体以一定流速通过装有 Fe_2O_3/Al_2O_3 负载型催化剂的反应器。
- ①硫化过程不仅可有效脱除 SO₂,同时还获得单质 S,其化学方程式为。
- ②研究表明,硫化过程中实际起催化作用的是反应初期生成的 FeS_2 ,硫化过程中还检测到 H_2S 。 FeS_2 催化硫化的过程可描述如下: _____,最后 S 再与 FeS 反应转化为 FeS_2 。

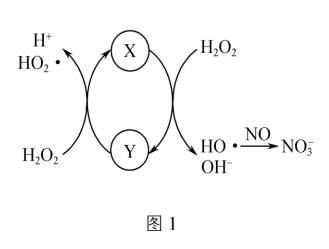
19. 工厂烟气(主要污染物 SO₂、NO)直接排放会造成空气污染,需处理后才能排放。

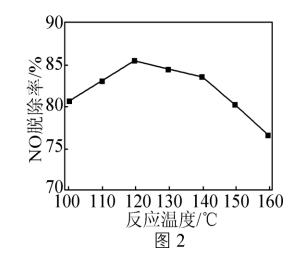
(1) O3氧化。O3氧化过程中部分反应的能量变化如图所示。

①已知 2SO₂(g)+O₂(g) =2SO₃(g) ΔH =-198 kJ·mol⁻¹.则反应 2O₃(g)=3O₂(g)的 ΔH =_____kJ·mol⁻¹°

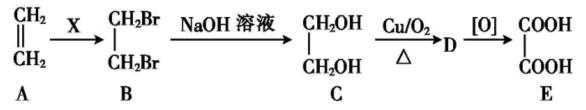
②其他条件不变时,增加 n(O₃),O₃氧化 SO₂ 反应几乎不受影响,其可能原因是____。

(2) "纳米零价铁— H_2O_2 "体系可将烟气中难溶的 NO 氧化为可溶的 NO_3 。


在一定温度下,将 H_2O_2 溶液和 HCl 溶液雾化后与烟气按一定比例混合,以一定流速通过装有纳米零价铁的反应装置,可将烟气中的 NO 氧化。


① Fe^{2+} 催化 H_2O_2 分解产生 $HO\cdot$, $HO\cdot$ 将 NO 氧化为 NO_3 一的机理如图 1 所示,Y 的化学式为

②NO与H₂O₂反应生成HNO₃的化学方程式为。


③纳米零价铁的作用是。

④NO 脱除率随温度的变化如图 2 所示。温度高于 120℃时,NO 脱除率随温度升高呈现下降趋势的主要原因是。

- 20. 自然界的许多动植物中含有有机酸,例如,蚂蚁体内含有蚁酸(甲酸),菠菜中含有草酸(乙二酸),柑橘中能提取柠檬酸。
- (1)甲酸(HCOOH)与乙酸互称 _____。
- (2)工业上用乙烯合成乙二酸(HOOC—COOH)流程如下:

- ①反应类型: $A \longrightarrow B$ 为 , $B \longrightarrow C$ 为
- ②X为 (化学式), D为 (结构简式)。

 CH2—COOH

 (3)与乙酸相似,柠檬酸(HO—C—COOH)的酸性比碳酸的强,能与碳酸钠溶液反应

 CH2—COOH

放出 CO₂气体,其反应方程式为____。