江苏省仪征中学 2021-2022 学年度第二学期高一地理学科导学案

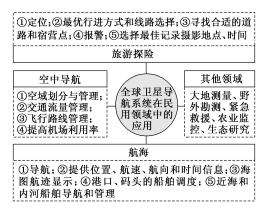
第四单元单元活动——地理信息技术的应用

		研制人: 刘婉锐	审核人: 李学忠						
	班级:		学号: _	授课日期: 2022.2.17					
【课程标》	准及要求】								
	课程标准	<u></u>		学习目标					
1. 运用	资料,掌握地理信息扩	支术的应用。	合思维)	理信息技术的特征及其应用。(综掌握地理信息技术的应用。(地理					
 【导读—	一读教材识基础】		•						
阅读地理	必修 一 教材第 100	6—111 页							
【导学一	一培素养引价值】								
一、地理	信息技术及其主要用途	<u>余</u>							
1. 地理信	息技术								
(1)概述:	地理信息技术是一门	对地理信息进行获取、	分析和应用的综合性技术	术,是地理科学与技术					
相结合的	产物。								
(2)核心技	术:遥感、	系统、卫星定位系统	等。						
2. 地理信	信息技术的主要用途								
	应用领域		作用						
		调金	查资源数量、分布,对农	7作物进行估产					
灾氧	害监测与评价	监测多	害分布,估算受灾面积,提供决策依据						
环块	竟监测与评价		监测环境现状及变化,	监测环境现状及变化,提供依据					
区域发展	、城市规划、工程设								
	工程勘察和测量,工程影响分析,城市布局优化 计								
	交通	定位	、导航、	导航、,监测地壳运动					
	其他		、安全保	障、科学研究					
[温馨提示	:] 地理信息技术和地	理信息系统的区别							
地理信息	技术包括遥感、地理作	言息系统、卫星定位系统	充,二者属于包含关系。						
二、遥感	及其应用								
1. 遥感概	抚述								
(1)概念:是利用装在飞机、飞船、卫星上的光学仪器和,对地表物体进行远距离感知的地理信息技术。									
(2)原理: 地球上的物体都在不停地吸收、、发射电磁波,不同物体的电磁波特性不同。									
(3)环节									
信息获取 → 传输 → 接收与处理 → 分析和应用									
(4)特点:探测范围、获取资料快、受地面条件限制少、获取信息量等。									
(5)应用: 资源评估、环境监测、									
2. 遥感景	修中识别地物								
色彩	水域为蓝色,人工建	筑多呈灰色,植被呈_	色						
				的宽度一般变化较小,而河流的宽					
形状	度多变; 道路相对比	2较顺直,而贝	弯弯曲曲等						
3. 遥感景	/像判读: 具体情况应	作具体分析,有的还应	当结合进行	「判读。					

三、全球卫星导航系统和地理信息系统的应用

1		全球	ŧπ	早	阜.	슦	豖	纮
1	•	エバ	N	Œ	TT.	カン し	ハヾ	こル

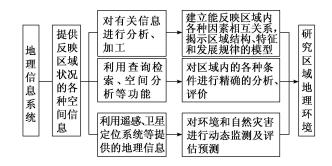
(1)功能: 获取	观测点的经纬点	度和高程,	实现导航、	定位、_	等	功能。		
(2)特点: 具有	高精度、高效	率和	的优	点。				
(3)应用:	、地	1面监测、対	ど通导航等	方面。				
2. 地理信息系	系统							
(1)概念: 地理	信息系统是在	计算机硬件	、软件系统	充支持下,	对整个或部	邓分地球表层	空间中的	有关地理分布数据
进行采集、存	储、管理、运算	章、	、显示	5和描述的	J技术系统。			
(2)应用:应用]于经济、社会、	、环境和生	态的规划、	决策和_	<u></u>	幹方面 。		
四、利用地理	信息技术监测剂	骨坡						
1. 卫星定位位	立移监测预警系	统						
(1)原理: 通过	在滑坡体和建筑	筑物上设置	的多个卫星	星定位监测	测桩进行			采集的数据实时传
输至	。 — <u>I</u>	旦变形量超过	<u>寸</u>		,系统将	F实时预警 。		
(2)应用的地理	!信息技术:全	球卫星导航	系统和		o			
2. 建立卫星定	定位位移监测预	警系统的意	义					
(1)为研究滑坡	变形特征、变	形机制和危	害程度等抗	是供了		•		
(2)通过监测预	[警的	,为	及时处置	滑坡险情	提供了	保障	章。	


【导思——析问题提能力】

核心归纳:

1. 遥感的应用

应用领域		具体内容	备注		
资源评 估	矿产资源	蕴藏矿产的地方大多是地质断裂或 环形构造带,较容易借助遥感技术 "发现"矿产	人们只需要分析遥感图像就可以划 定蕴藏矿产的大致区域		
	通过遥感图像解译或图像处理技 生物资源 提取植被的分布、类型、结构、 状况、产量等数据		为农业、林业、城市绿化、环境保护 等部门服务		
环境监测与灾害预数	环境监测	监测荒漠化、土壤盐渍化、海上冰山 漂流、海洋生态、全球气候变化及其 影响、植被变化、水体污染、大气污 染等	有利于人们了解环境变化,使环境得 到保护和改善		
害预警	灾害预警 监测旱情、洪灾、滑坡、泥石流、地 震、农林病虫害、森林火灾等		有利于防灾减灾		
工程建设及规划		指导大型水利枢纽、港口、核电站、 路网等工程建设和城市规划等	促使规划和建设更合理		
	其他	军事侦察、海上交通、海洋渔业等	提供重要信息来源		


2. 全球卫星导航系统在民用领域中的应用

3. 地理信息系统的应用

目前,地理信息系统已被广泛应用于经济、社会、环境和生态的规划、决策和管理等方面。

(1)在区域地理环境研究中的应用

(2)在城市管理中的应用

(2) 12 /9/14 11 -1	1 43/22/13	
应用领域	具体内容	举例说明
城市信息管理	向城市居民提供日常工作和生活所需的各种信	提供旅游景点分布及详情、商业网点的布局及
与服务	息	特色、城市道路与建筑物的空间分布等信息
城市规划	进行城市与区域多目标的开发和规划	进行城市建筑物分布和城市地下管网分布的管 理等
城市道路交通	把有关道路状况、交通流量、沿线环境等信息	查询某个加油站、立交桥的坐标位置或某个时
管理	显示出来,提供空间信息查询	间某路段的车流量
城市救灾防灾	在实时跟踪灾害的发生、发展过程的基础上, 对灾害进行快速分析、评价和模拟,并辅助开 展灾后应急和恢复工作信息查询、路面质量查 询等服务	建立防火区的火灾信息系统,并建立相应的救护路线模型和灾后损失评估模型等
城市环境管理	环境规划与决策、监测、评价、预报等	对城市环境信息(大气、水、土地、植被、噪声等方面)进行综合管理和处理,实现环境信息的 共享

[方法技巧]

地理信息技术手段的选取技巧

对于地理信息技术的考查,主要考查其作用和应用领域的不同。因此,学生只要总体上抓住地理信息技术的区别,就能对其选取做出正确的判断。可以重点记住三种技术的主要区别:

(1)"点"与"面"判断遥感技术

卫星定位系统的主要功能是定位和导航。它的最大特点是工作对象是一个"点"或"多个点",明显区别于遥感和地理信息系统的工作对象——"面"。在地理信息技术中选取适当手段时,要看其工作对象是"点"还是"面",如果是"点"则选用卫星定位系统,如果是"面"则选用遥感或地理信息系统。

(2)"想"与"看"区分遥感、地理信息系统

地理信息系统是地图的延伸,主要功能是进行空间数据的分析和处理。对事象的发展变化进行预测、评估,需要计算、思考,即"想",凡是需要"想"的选地理信息系统。遥感的主要功能是收集信息,尤其对于大范围、大面积、人不易观测的地物信息的获取,即"看",只"看"不用"想"的选用遥感。

(3)关键词判断地理信息技术

- ①遥感: "获取"。
- ②卫星定位系统: "定位""导航""精确""精密""精准"等。
- ③地理信息系统: "分析""处理""查询""预测"等。

【导练——解例题找方法】

环境与灾害监测预报小卫星的发射,使减灾部门拥有了专门用于减灾工作的遥感卫星,对救灾工作起到了积极作用。据此回答1~3题。

- 1. "环境减灾"卫星对生态环境和灾害进行动态监测,直接应用的技术是()
 - A. 遥感

B. 地理信息系统

C. 数字地球

- D. 北斗卫星导航系统
- 2. "环境减灾"卫星不能直接监测的自然灾害是()
 - A. 寒潮

B. 干旱

C. 地震

- D. 农作物病虫害
- 3. 遥感能够帮助人们探测内生矿床,是因为()
- A. 内生矿大多分布在沉积岩内
- B. 煤炭大多分布在沉积岩内
- C. 许多内生矿分布在地质断裂带上
- D. 铁矿全都分布在地质断裂带上

2020 年疫情期间,安徽省利用大数据、移动互联网等手段推出加强疫情防控的创新举措——安康码。系统通过获取用户一定时期内的行程记录,综合用户填写的信息,形成红、黄、绿不同颜色的健康码。据此完成 4~5 题。

- 4. 不同颜色安康码的生成与使用,运用到的地理信息技术有()
 - A. GNSS 和 RS

B. RS和GIS

C. GNSS 和 GIS

- D. GIS 和数字地球
- 5. 安康码能够辨别居民健康信息的原理是借助手机()
 - A. 记录移动轨迹

B. 共享他人信息

C. 获取逐日体温

D. 查询疫情分布

读我国地壳运动观测网图,回答6~7题。

- 6. 对地壳运动进行精确观测采用的主要技术是()
 - A. 遥感

B. 全球卫星导航系统

C. 地理信息系统

D. 虚拟现实技术

- 7. 根据观测站的分布特点判断,建立地壳运动观测网最主要的目的是()
 - A. 监测和预报泥石流、滑坡
 - B. 测量大地高程
 - C. 监测和预报地震
 - D. 研究电离层

在 2020 年上海进口博览会上,"智慧公卫城市"创新方案首次公开亮相。该方案提出对中国未来城市智慧公共卫生体系的整体构想,从监测、预警、响应和防控的维度设计、开发出三大创新解决方案,全方位构建智慧公卫城市,助力应对新发传染病的挑战。据此完成 8~9 题。

- 8. "智慧公卫城市"使用的地理信息技术有(
 - A. GNSS, RS

B. GIS, RS

)

C. GIS, GNSS

- D. AR, RS
- 9. 通过"智慧公卫城市"管理平台,可(
 - ①预测传染病蔓延范围 ②合理调配医疗资源
 - ③探知传染病发生原因 ④规划急救交通路线
 - A. (1)(2)(3)

B. (2)(3)(4)

C. (1)(2)(4)

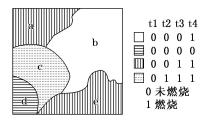
D. (1)(3)(4)

【导悟——拓思维建体系】

江苏省仪征中学 2021—2022 学年度第二学期高一地理学科作业

第四单元单元活动——地理信息技术的应用

		研制人: 刘始	宛锐 "	审核人:	李学忠		
班级	:	学号	:	时间:	2021. 2. 17	7作业时长: 20分钟	ļ
	 】(★为选做题)						
北京时	间 2020 年 7 月 21 日	5 时 30 分左右,;	清江上游中	 臣堡乡马者	8村沙子坝滑	坡,造成清江上游形成	堰塞湖,
随时有溃坝	形成洪水下泄的危险。	据此完成1~2	题。				
1. 为快速了	了解该堰塞湖水域面积	!,需要借助()				
A. RS		В.	GIS				
C. GN	SS	D.	数字地球				
2. 该地理信	言息技术还可以用于()					
A. 珠山	峰高度测量	В.	辽宁作物	产量估算			
C. 南京	京城市规划	D.	淘宝货物	跟踪查询			
2020年	-2月蝗灾席卷东非之	后扩散到了南亚	的巴基斯坦	旦和印度,	部分地区暴	发饥荒。2月24日,中	国蝗灾
防治工作组	抵达巴基斯坦,帮助	巴方应对二十七年	年来最严重	호蝗灾。 据	6此回答3~4	题。	
3. 与蝗灾易	暴发密切相关的自然灾	[害是()					
A. 地角	芸	В.	干旱				
C. 暴雨	Ħ	D.	寒潮				
4. 利用北斗	导航系统可以帮助我	医蝗灾防治工作	组在治蝗	过程中()		
①提供	灾区的影像 ②统计	灾区的经济损失					
③确定	救灾人员的位置 ④	央速到达指定地,	点并开展工	作			
A. ①	2)	В.	13				
C. 26	3)	D.	34				
麦收时	节,农时紧迫。因为:	种种原因,种粮	大户刘某与	早先预定的	勺收割机没有:	按时到来。他却没有太	、着急,
手机上的一	款软件帮了他的大忙	。在手机上,他1	的小麦作业	上需求、出	也理位置等信	息,被夏收大数据处理	里平台推
送到半径 20)公里内注册的农机手	·手机上。半个小	·时内,先	后有4个	农机手抢单成	功,高某第一个抢单。	据此完
成5~6题。							
5. 现代化表	是收所用到的地理信息	、技术有()					
A. RS	、 GNSS	В.	GNSS, G	IS			
C. RS			GNSS、数				
	"预定收割机"的麦收		、软件平台	的介入()		
	高了收割机麦收的速度						
	氐了农机手的经济效益						
	高了收割机使用精准原						
	加了种植户的麦收成本						
读某地	理专题研究建立的地	理信息系统图层,	完成7~	8 题。			
		甲地形	乙 河流	丙 公路	丁居住区		


7. 叠加甲与乙图层,最可能应用于预防()

 A. 泥石流
 B. 地震
 C. 台风
 D. 寒潮

 8. 若利用 GIS 制定水污染突发应急预案,需要叠加的图层有()

 A. 甲与乙
 B. 丙与乙
 C. 丙与丁
 D. 乙与丁

某地发生森林火灾,通过对该地卫星影像的分析,绘制成森林大火燃烧示意图,t1~t4表示火灾的四个阶段。 读图,回答9~10题。

- 9. 完成上图的绘制需要运用的地理信息技术是(
 - A. 遥感

B. 全球卫星导航系统

— 混浊泥水(悬浮泥沙含量 99 mg/L) ---- 清澈水体(悬浮泥沙含量 10 mg/L)

0.8

0.9波长/µm

0.6

0.5

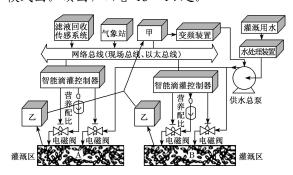
- C. 遥感和地理信息系统
- D. 地理信息系统
- 10. 下列叙述中,最为合理的是()
 - A. a 区的大火燃烧时间最长
 - B. b 区的树种比 c 区易燃
 - C. 森林大火燃烧至 t4 阶段时结束
 - D. d 区有可能是湖泊

读不同水质水体反射率对比图,完成11~12题。

- (★选做题) 11. 两种水体相比(
 - A. 在 0.6 μm 附近反射率差别最小
 - B. 清澈水体反射率变化幅度大
 - C. 相同波段混浊泥水反射率大
 - D. 混浊泥水吸收太阳辐射量较大

A. 统计泥沙差量

B. 监测洪涝灾害


C. 模拟泾渭分明

D. 评估进出水量

以色列政府强调"科技立国",创造出沙漠中的农业奇迹,使农业走上了可持续发展的道路。下面是以色列的一个莫沙夫(合作社)农业生产模式图。读图,回答13~14题。

≥ 10

反射率/8848

- (★选做题)13. A、B 两农田其中一个发生了病虫害,通过乙把信息传输给甲,则甲系统做出分析判断后,准确对发病农田进行防治。在这个处理过程中,甲运用了()
 - ①遥感技术 ②全球卫星导航系统
 - ③地理信息系统 ④数字地球
 - A. 12

B. 23

C. 34

- D. (1)(4)
- (★选做题)14. 假如在我国,这种节水模式最适宜借鉴的地区是(
 - A. 东北地区

B. 西南地区

C. 南方地区

D. 西北地区