江苏省仪征中学 2021 届高三 8 月学情检测物理(参考答案)

一、二选择题:

1	2	3	4	5	6	7	8	9	10	11	12
A	С	A	В	В	A	В	Α	BC	ABD	BC	BD

三、实验题:

14、【答案】(1) AC ; C (2)注射器的刻度 ,缓慢; $\frac{p_0}{2}$, A

四、计算题:

15、【答案】解: (1)设飞机在地面滑行时加速度的大小为 a,由运动学公式得

 $v_1^2 = 2ax$ (1)

设滑行过程中所受阻力为 F_{gg} ,由牛顿第二定律得 $F-F_{gg}=ma$

联立①②^{式,代入数据得} $F = 4 \times 10^5 \,\text{N}$ 3

(2) 设飞机离地时的功率为 P, 由功率的表达式得

 $P = F v_1 \tag{4}$

由动能定理得

 $Pt - mgh - W_f = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$ (5)

联立(3)4(5)式,代入数据得

 $W_f = 1.898 \times 10^{10} J$

16、【答案】解: (1) 开始时,A、B 中气体的压强: $p_1 = p_0 + \frac{mg}{s}$ 对 A 气体研究,当气体的体积增大为原来 2 倍,气体发生等压变化即: $\frac{V}{T_0} = \frac{2V}{T}$

得T=2T₀

对 B 气体研究,气体发生等容变化,则 $\frac{p_1}{r_0} = \frac{p_2}{r}$

得 $p_2 = 2p_1 = 2(p_0 + \frac{mg}{s})$

(2) 活塞向上移动过程对外做功为 $W = -p_1 \triangle V = -(p_0 + \frac{mg}{5})V$

根据热力学第一定律,两部分气体增加的内能 $\Delta U = Q + W = Q - (p_o + \frac{mg}{s})V$

17、【答案】解: (1) 如图,设光束经折射后到达内球面上B 点在A 点,由题意知,入射

角
$$i = 45$$
°,折射角 $r = \angle BAC$ 由几何关系有: $sinr = \frac{80}{40} = 0.5$

由折射定律有: $n = \frac{\sin i}{\sin i}$

代入数据解得 $n = \sqrt{2}$

(2)如答图,设在A点的入射角为i时,光束经折射后到达内球面上C点,并在C点恰发生全反射,则光束在内球面上的入射角 $\angle ACD$ 恰等于临界角C由 $sinC = \frac{1}{2}$

代入数据得: ZACD = C = 45°

由正弦定理有
$$\frac{\sin \angle ACD}{AO} = \frac{\sin \angle CAO}{CO}$$
 $AO = 2R$, $CO = R$

解得:
$$\sin\angle CAO = \frac{\sin\angle ACD}{2} = \frac{\sqrt{2}}{4}$$

由折射定律有: **n** = sini / sin∠CAD

解得: sini'=0.5, 即此时的入射角i'=30°

18、【答案】解: (1)A下滑的过程中,根据机械能守恒定律有:

$$mgdsin\vartheta = \frac{1}{2}mv_0^2$$

解得: vn = 6m/s

(2)设碰撞后瞬间 $A \times B$ 的速度大小分别为 $v_1 \times v_2$,根据动量守恒定律有:

 $mv_0 = mv_1 + mv_2$

 $A \times B$ 碰撞过程机械能守恒,有:

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2$$

解得v2 = v0 = 6m/s

A、B碰撞后,物块B沿斜面向下压缩弹簧至B速度为零的过程中,根据能量守恒定律有:

$$E_p = \frac{1}{2} m v_2^2 + mgx sin \vartheta$$

解得x = 0.5m。

(3)A、B碰撞前,弹簧的压缩量为:

$$x_1 = \frac{mgsin\vartheta}{k}$$

当C恰好要离开挡板时,弹簧的伸长量为:

$$x_2 = \frac{mgsin\vartheta}{k}$$

可见在 B 开始沿斜面向下运动到 C 刚好要离开挡板的过程中,弹簧的弹性势能的改变量为

零。根据机械能守恒定律: $\frac{1}{2}mv_2^2=E_k+mg(x_1+x_2)sin\vartheta$ 解得: k=600N/m。