高三数学试题

一、单项选择题

1.已知 $A = \{x \mid -1 \le x < 3\}$, $B = \{0, 2, 4, 6\}$, 则 $A \cap B = ($

- A. $\{0,2\}$

- B. $\{-1,0,2\}$ C. $\{x \mid 0 \le x \le 2\}$ D. $\{x \mid -1 \le x \le 2\}$

2.已知复数z满足z(1+i)=3+4i,则|z|=()

A. $\frac{\sqrt{5}}{2}$

B. $\frac{5}{4}$

C. $\frac{5}{2}$

D. $\frac{5\sqrt{2}}{2}$

3.已知 $x \in \mathbf{R}$,则" $\left(\frac{1}{2}\right)^x > 1$ "是"-2 < x < -1"的(

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

 $4.\left(2-\sqrt{x}\right)^{8}$ 展开式中 x^{4} 项的系数为 ()

A. 16

C. 8

5.已知向量 $\vec{a} = (x,2)$, $\vec{b} = (2,y)$, $\vec{c} = (2,-4)$,且 $\vec{a}//\vec{c}$, $\vec{b} \perp \vec{c}$,则 $\left| \vec{a} - \vec{b} \right| = ($

A. 3

- B. $\sqrt{10}$
- C. $\sqrt{11}$
- D. $2\sqrt{3}$

6.已知抛物线 $y^2 = 4x$ 的焦点为 F,准线为 l,P 为该抛物线上一点, $PA \perp l$,A 为垂足.若直线 AF 的斜率为

 $-\sqrt{3}$,则 $\triangle PAF$ 的面积为(

- A. $2\sqrt{3}$
- B. $4\sqrt{3}$
- C. 8

D. $8\sqrt{3}$

7.已知 $\left(\frac{1}{3}\right)^a = \log_3 a$, $3^b = \log_{\frac{1}{3}} b$, $\left(\frac{1}{3}\right)^c = \log_{\frac{1}{2}} c$, 则 a, b, c 的大小关系是(

- A. c < b < a
- B. a < b < c
- C. b < c < a
- D. b < a < c

8.已知函数 $f(x) = 2\sin(2x + \varphi)$ 的图象过点 $A\left(\frac{\pi}{6}, 2\right)$,则()

A. 把y = f(x)的图象向右平移 $\frac{\pi}{6}$ 个单位得到函数 $y = 2\sin 2x$ 的图象

B. 函数 f(x) 在区间 $\left(-\frac{\pi}{2},0\right)$ 上单调递减

C. 函数 f(x) 在区间 $[0,2\pi]$ 内有五个零点

D. 函数 f(x) 在区间 $\left[0, \frac{\pi}{3}\right]$ 上的最小值为 1

二、多项选择题

9.已知双曲线 C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 $F_1(-5,0)$, $F_2(5,0)$, 则能使双曲线 C 的方程为 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 的是()

A. 离心率为
$$\frac{5}{4}$$

B. 双曲线过点
$$\left(5, \frac{9}{4}\right)$$

C. 渐近线方程为
$$3x \pm 4y = 0$$

10.已知菱形 ABCD中, $\angle BAD = 60^\circ$,AC 与 BD 相交于点O,将 $\triangle ABD$ 沿 BD 折起,使顶点A 至点M,在折起的过程中,下列结论正确的是()

A.
$$BD \perp CM$$

B. 存在一个位置,使
$$\triangle CDM$$
 为等边三角形

11.已知定义在 $\left[0,\frac{\pi}{2}\right]$ 上的函数 f(x) 的导函数为 f'(x),且 f(0)=0, $f'(x)\cos x+f(x)\sin x<0$,则

下列判断中正确的是()

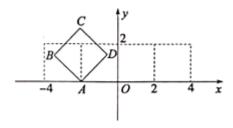
A.
$$f\left(\frac{\pi}{6}\right) < \frac{\sqrt{6}}{2} f\left(\frac{\pi}{4}\right)$$

$$B. \quad f\left(\ln\frac{\pi}{3}\right) > 0$$

$$C. \quad f\left(\frac{\pi}{6}\right) > \sqrt{3}f\left(\frac{\pi}{3}\right)$$

$$D. \quad f\left(\frac{\pi}{4}\right) > \sqrt{2}f\left(\frac{\pi}{3}\right)$$

12.在平面直角坐标系 xOy 中,如图放置的边长为 2 的正方形 ABCD 沿 x 轴滚动(无滑动滚动),点 D 恰好 经过坐标原点,设顶点 B(x,y) 的轨迹方程是 y=f(x),则对函数 y=f(x) 的判断正确的是()



A. 函数 y = f(x) 是奇函数

- B. 对任意的 $x \in \mathbf{R}$,都有f(x+4) = f(x-4)
- C. 函数 y = f(x) 的值域为 $\left[0, 2\sqrt{2}\right]$
- D. 函数 y = f(x) 在区间 [6,8] 上单调递增

三、填空题

13.曲线 $y = (x+1)e^x$ 在点 (0,1) 处的切线的方程为 . .

14.已知
$$\frac{\sin \alpha \cos \alpha}{1-\cos 2\alpha} = 1$$
, $\tan(\alpha-\beta) = \frac{1}{3}$,则 $\tan \beta =$ _____.

15.在四面体 S - ABC 中, SA = SB = 2 ,且 $SA \perp SB$, $BC = \sqrt{5}$, $AC = \sqrt{3}$,则该四面体体积的最大值为______,该四面体外接球的表面积为______.

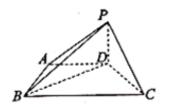
16.在平面直角坐标系 xOy 中, A 为直线 l: y=3x 上在第三象限内的点, B(-10,0) ,以线段 AB 为直径的圆 C (C 为圆心)与直线 l 相交于另一个点 D , $AB \perp CD$,则圆 C 的标准方程为______.

四、解答题

17.在 $\triangle ABC$ 中,a,b,c 分别为内角 A,B,C 的对边,且满 $(b-a)(\sin B + \sin A) = c(\sqrt{3}\sin B - \sin C)$.

- (2) 再在①a=2,② $B=\frac{\pi}{4}$,③ $c=\sqrt{3}b$ 这三个条件中,选出两个使 $\triangle ABC$ 唯一确定的条件补充在下面的问题中,并解答问题.若______, 求 $\triangle ABC$ 的面积. 18.已知数列 $\{a_n\}$ 为公差不为0的等差数列,且 $a_2=3$, a_1 , a_2 , a_5 成等比数列.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 S_n 为数列 $\{a_n+2\}$ 的前n项和, $b_n=\frac{1}{S_n}$,求数列 $\{b_n\}$ 的前n项和 T_n .

19.如图,在四棱锥 P-ABCD 中, PD 上底面 ABCD , AD//BC , $\angle ABC=90^\circ$, $\angle BCD=45^\circ$, BC=2AD .



- (1) 求证: $BD \perp PC$;
- (2) 若 PC = BC, 求平面 PAD 和平面 PBC 所成的角(锐角)的余弦值.

20.近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中语文、数学、外语三科为必考科目,每门科目满分均为150分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每门科目满分均为100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)

- 中,采用分层抽样的方法从中抽取n名学生进行调查,其中,女生抽取45人.
- (1) 求n的值;
- (2) 学校计划在高一上学期开设选修中的"物理"和"地理"两个科目,为了了解学生对这两个科目的选课情况,对抽取到的 n 名学生进行问卷调查(假定每名学生在"物理"和"地理"这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的 2×2 列联表,请将下面的 2×2 列联表补充完整,并判断是否有 99% 的把握认为选择科目与性别有关?说明你的理由;

	选择"物理"	选择"地理"	总计
男生		10	
女生	25		
总计			

(3) 在抽取到的 45 名女生中,按(2)中的选课情况进行分层抽样,从中抽出 9 名女生,再从这 9 名女生中抽取 4 人,设这 4 人中选择"物理"的人数为 X ,求 X 的分布列及期望.附:

$$K^{2} = \frac{n(ad - bc)^{2}}{(a+b)(a+c)(c+d)(b+d)}, \quad n = a+b+c+d$$

$P(K^2 \ge k_0)$	0.05	0.01	0.005	0.001
k_0	3.841	6.635	7.879	10.828

21.已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{1}(a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 直线 $y = \frac{3}{2}x$ 与椭圆 E 在第一象限内的交点是 M ,且 $MF_2 \perp x$ 轴, $\overline{MF_1} \cdot \overline{MF_2} = \frac{9}{4}$.

- (1) 求椭圆E的方程;
- (2) 是否存在斜率为-1的直线l与以线段 F_1F_2 为直径的圆相交于A,B两点,与椭圆E相交于C,D两点,且 $|CD|\cdot|AB|=\frac{12\sqrt{13}}{7}$?若存在,求出直线l的方程;若不存在,说明理由.

22.已知函数
$$f(x) = e^x(1+m\ln x)$$
 , 其中 $m > 0$, $f'(x)$ 为 $f(x)$ 的导函数,设 $h(x) = \frac{f'(x)}{e^x}$, 且 $h(x) \ge \frac{5}{2}$

恒成立.

- (1) 求m的取值范围;
- (2) 设函数 f(x) 的零点为 x_0 , 函数 f'(x) 的极小值点为 x_1 , 求证: $x_0 > x_1$.