江苏省仪征中学 2019-2020 学年度阶段考试试卷

高一数学

一. 选择题: 共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项是符合题目要 求的.

1. 设集合 $M = \{-1,0,1\}, N = \{0,1\}$,则集合 $M \cup N$ 的子集个数为

)

A. 9

B. 8

C. 7

D. 6

2. $\sin \frac{2020\pi}{3} =$

A. $\frac{\sqrt{3}}{2}$ B. $-\frac{\sqrt{3}}{2}$ C. $\frac{1}{2}$

3. 下列函数中,既是偶函数,又在区间 $(0,+\infty)$ 上单调递增的函数为

A. $y = \ln(x^2 - 1)$ B. $y = \sqrt{x}$ C. $y = 3^{|x|}$

D. $y = |\cos x|$

4. 己知向量 $\vec{a} = (1, m), \vec{b} = (3, -1)$,且 $(2\vec{a} - \vec{b}) \perp \vec{b}$,则m =

A. −2

B. -1

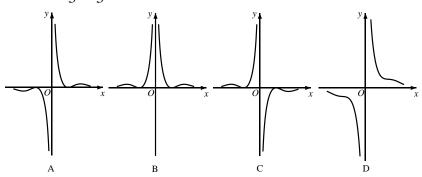
C. 2

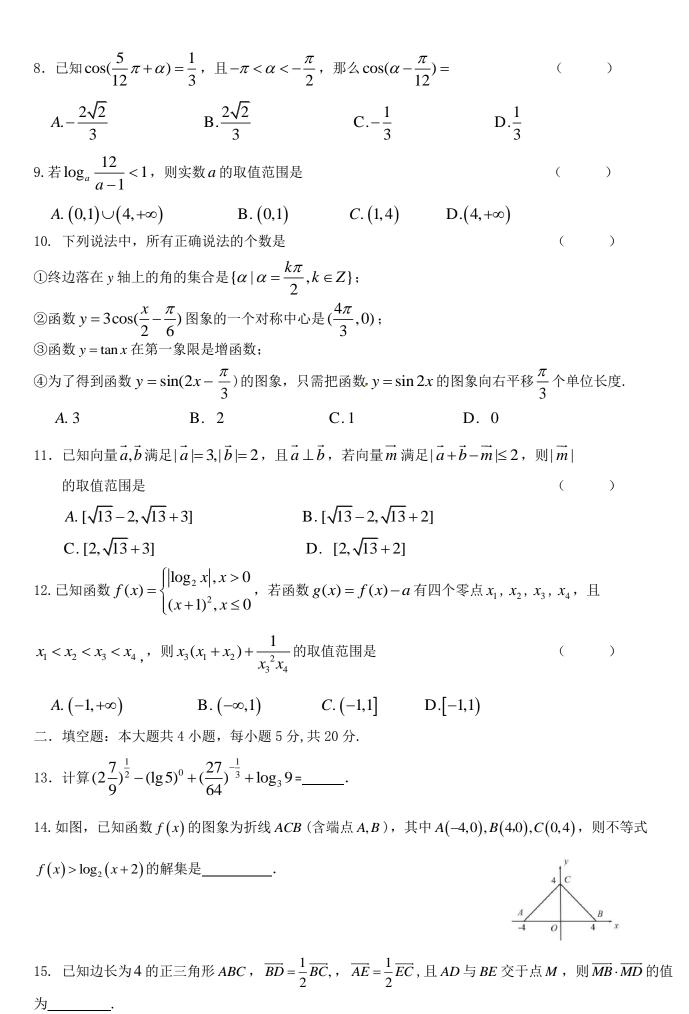
D. 4

5. 已知角 $\alpha(0 \le \alpha < 2\pi)$ 的终边经过点 $P(\sin \frac{5\pi}{6}, \cos \frac{5\pi}{6})$, 则 $\alpha =$

 $A.-\frac{\pi}{\epsilon}$

 $B.\frac{7\pi}{6}$ $C.\frac{5\pi}{3}$ $D.-\frac{\pi}{3}$


6. 设 D, E 分别是 $\triangle ABC$ 的边 AB, BC 上的点, $AD = \frac{1}{2}AB$, $BE = \frac{2}{3}BC$, 若 $\overrightarrow{DE} = \lambda_1 \overrightarrow{AB} + \lambda_2 \overrightarrow{AC}$


 $(\lambda_1, \lambda_2$ 为实数),则 $\lambda_1 + \lambda_2$ 的值为

()

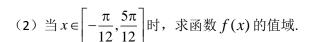
 $A.\frac{1}{3}$ $B.\frac{2}{3}$ $C.\frac{3}{4}$

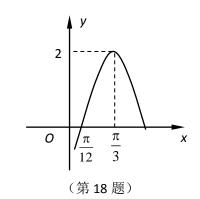
7. 函数 $y = \frac{\cos 3x + 1}{3^x - 3^{-x}}$ 的图像大致为

16. 若函数 $f(x) = x^2 + ax$ (a > 0) 对区间 $\left(\frac{1}{2}, 1\right)$ 内的任意两个相异的实数 x_1, x_2 ,恒有 $\left|f(x_1) - f(x_2)\right| > 2|x_1 - x_2|$,则实数a的取值范围______.

三. 解答题: 本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.

17. (本小题满分 10 分)


设集合
$$A = \left\{ x \in R \middle| \frac{1}{8} \le 2^x \le 4 \right\}, B = \left\{ y \middle| y = \log_2 x + m, \frac{1}{4} \le x \le 16 \right\}.$$


- (1) 当 $A \cup B = B$ 时,求实数m的取值范围;
- (2) 当A∩B≠∅时,求实数m的取值范围.

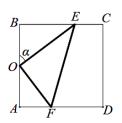
18. (本小题满分 12 分)

已知函数 $f(x) = A\sin(\omega x + \varphi)$ $(A > 0, \omega > 0, |\varphi| < \pi)$,它的部分图象如图所示.

(1) 求函数 f(x) 的解析式;

19. (本小题满分 12 分)

已知 $\vec{a} = (\cos \alpha, \sin \alpha)$, $\vec{b} = (\cos \beta, \sin \beta)$, 且 $|\vec{a} - \vec{b}| = \frac{\sqrt{7}}{7}$.


(1) 求
$$\sin\left(\frac{\pi}{2} - \alpha\right) \cos(2\pi - \beta) - \sin(\pi + \alpha) \cos\left(\beta - \frac{\pi}{2}\right)$$
的值;

(2) 若
$$\cos \alpha = \frac{1}{7}$$
, 且 $0 < \beta < \alpha < \frac{\pi}{2}$, 求 β 的值.

20. (本小题滿分 12 分) 某度假区有一块长方形水池 ABCD, AB = 50米, $BC = 25\sqrt{3}$ 米,为了便于游客观光游览,该度假区决定在水池内建 3 条如图所示的观光走廊 OE , EF , EF

(1)设 $\angle BOE = \alpha$, 试将 $\triangle OEF$ 的周长l表示成 α 的函数关系式。,并求出此函数的定义域;

(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并,求出最低总费用.

21. (本小题满分 12 分)

已知一次函数 f(x) = kx + b 的图像与 x 轴、 y 轴分别相交于点 A,B, $\overrightarrow{AB} = \frac{1}{2} \mathbf{i} + \mathbf{j}$ (\mathbf{i},\mathbf{j} 分别是与 x 轴、 y 轴正半轴同方向的单位向量),函数 $g(x) = 2x^2 - x - 4$.

(1) 求k,b的值; (2) 当x满足 $f(x) \ge g(x)$ 时,求函数 $h(x) = g(x) + ax, a \in \mathbb{R}$ 的最小值.

22. (本小题满分 12 分)

对于函数 f(x),若存在实数对 (a,b),使得等式 $f(a+x)\cdot f(a-x)=b$ 对定义域中的每一个 x 都成立,则称函数 f(x) 是 "(a,b)型函数".

- (1) 判断函数 $f_1(x) = x$ 是否为 "(a,b)型函数", 并说明理由;
- (2) 若函数 $f_2(x) = 4^x$ 是 "(a,b) 型函数", 求出满足条件的一组实数对(a,b);
- (3) 已知函数 g(x) 是 "(a,b) 型函数", 对应的实数对 (a,b) 为(1,4).当 $x \in [0,1]$

时, $g(x) = x^2 - m(x-1) + 1$ (m > 0), 若当 $x \in [0,2]$ 时, 都有 $1 \le g(x) \le 4$, 试求 m 的取值范围.