江苏省仪征中学高一年级 3 月阶段性数学测试卷 参考答案

1. A

2. B

4. D 5. C 6. C

7. B 8. D

9. BC 13. $\frac{\pi}{6}$ 10. BD

3. C 11. ABD

4. D 12. ACD

14. $\sqrt{3}x - y + 2 = 0$

15. $\frac{\pi}{2}$

16. 3

17. 解: (1) 由正弦定理得 $\sqrt{3}\sin B\sin C = \cos B\sin C + \sin C$,

$$\triangle ABC + \sin C > 0$$
, $\text{fill } \sqrt{3} \sin B - \cos B = 1$,

所以
$$\sin\left(B - \frac{\pi}{6}\right) = \frac{1}{2}$$
, $-\frac{\pi}{6} < B - \frac{\pi}{6} < \frac{5\pi}{6}$, $B - \frac{\pi}{6} < \frac{\pi}{6}$, 所以 $B = \frac{\pi}{3}$;

(2) 因为 $b^2 = ac$, 由正弦定理得 $\sin^2 B = \sin A \sin C$,

$$\frac{1}{\tan A} + \frac{1}{\tan C} = \frac{\cos A}{\sin A} + \frac{\cos C}{\sin C} = \frac{\cos A \sin C + \sin A \cos C}{\sin A \sin C}$$
$$= \frac{\sin(A+C)}{\sin A \sin C} = \frac{\sin(\pi-B)}{\sin A \sin C} = \frac{\sin B}{\sin A \sin C}$$
所以,
$$\frac{1}{\tan A} + \frac{1}{\tan C} = \frac{\sin B}{\sin^2 B} = \frac{1}{\sin B} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2\sqrt{3}}{3}.$$

18. 解: (1) 由直线 l_1 的方程为 x + 2y - 4 = 0 且 $l_1 \perp l_2$

可得直线 l_2 的斜率为: 2,又 l_2 在 x 轴上的截距为 $\frac{1}{2}$,即过点 $\left(\frac{1}{2},0\right)$

所以直线
$$l_2$$
 方程: $y = 2\left(x - \frac{1}{2}\right)$ 即 $2x - y - 1 = 0$,

联立
$$l_1$$
方程,得:
$$\begin{cases} 2x-y-1=0\\ x+2y-4=0 \end{cases} \Rightarrow \begin{cases} x=\frac{6}{5}\\ y=\frac{7}{5} \end{cases}$$
,故交点为 $\left(\frac{6}{5},\frac{7}{5}\right)$

(2) 依据题意可知:

直线 l_3 在Y轴上截距是在x轴上的截距的 2 倍,

且直线
$$l_3$$
 经过 l_1 与 l_2 的交点 $\left(\frac{6}{5}, \frac{7}{5}\right)$

当直线
$$l_3$$
原点时, l_3 方程为: $y = \frac{7}{6}x$

当直线 l_3 不过原点时,设 l_3 方程为 $\frac{x}{a} + \frac{y}{2a} = 1$

则
$$a = \frac{19}{10}$$
, 故 l_3 方程为: $\frac{10x}{19} + \frac{5y}{19} = 1$,

即
$$10x + 5y - 19 = 0$$

综上所述:
$$l_3$$
的方程为 $y = \frac{7}{6}x$ 或 $10x + 5y - 19 = 0$

$$\therefore f(x) = 2\cos x \left(\sqrt{3}\sin x + \cos x\right) - 1 = 2\sqrt{3}\sin x \cos x + 2\cos^2 x - 1$$
$$= \sqrt{3}\sin 2x + \cos 2x = 2\sin\left(2x + \frac{\pi}{6}\right),$$

所以,函数
$$y = f(x)$$
 的周期为 $T = \frac{2\pi}{2} = \pi$,

$$\diamondsuit -\frac{\pi}{2} + 2k\pi \le 2x + \frac{\pi}{6} \le \frac{\pi}{2} + 2k\pi \left(k \in Z\right), \quad \text{if } \exists -\frac{\pi}{3} + k\pi \le x \le \frac{\pi}{6} + k\pi \left(k \in Z\right);$$

因此,函数
$$y = f(x)$$
 的增区间为 $\left[-\frac{\pi}{3} + k\pi, \frac{\pi}{6} + k\pi\right](k \in Z)$,减区间为 $\left[\frac{\pi}{6} + k\pi, \frac{2\pi}{3} + k\pi\right](k \in Z)$;

(2)
$$:: f(\alpha) = 2\sin\left(2\alpha + \frac{\pi}{6}\right) = \frac{8}{5}, :: \sin\left(2\alpha + \frac{\pi}{6}\right) = \frac{4}{5},$$

$$\therefore \alpha \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right), \quad \therefore 2\alpha + \frac{\pi}{6} \in \left(\frac{2\pi}{3}, \frac{7\pi}{6}\right), \quad \therefore \cos\left(2\alpha + \frac{\pi}{6}\right) = -\sqrt{1 - \sin^2\left(2\alpha + \frac{\pi}{6}\right)} = -\frac{3}{5},$$

$$\therefore \cos 2\alpha = \cos \left[\left(2\alpha + \frac{\pi}{6} \right) - \frac{\pi}{6} \right] = \cos \left(2\alpha + \frac{\pi}{6} \right) \cos \frac{\pi}{6} + \sin \left(2\alpha + \frac{\pi}{6} \right) \sin \frac{\pi}{6}$$

$$= -\frac{3}{5} \times \frac{\sqrt{3}}{2} + \frac{4}{5} \times \frac{1}{2} = \frac{4 - 3\sqrt{3}}{10}$$

20.
$$\overrightarrow{AR} : (1) \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + \frac{1}{4}\overrightarrow{BC} = \overrightarrow{AB} + \frac{1}{4}\left(\overrightarrow{AC} - \overrightarrow{AB}\right) = \frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$$

$$\therefore x = \frac{3}{4}, \quad y = \frac{1}{4}, \quad \boxtimes \mathbb{H}, \quad x - y = \frac{3}{4} - \frac{1}{4} = \frac{1}{2};$$

(2) 设
$$\overrightarrow{AP} = \lambda \overrightarrow{AM} = \frac{3}{4} \lambda \overrightarrow{AB} + \frac{1}{4} \lambda \overrightarrow{AC}$$
,

再设
$$\overrightarrow{NP} = k \overrightarrow{NC}$$
,则 $\overrightarrow{AP} - \overrightarrow{AN} = k \left(\overrightarrow{AC} - \overrightarrow{AN} \right)$,即 $\overrightarrow{AP} = \left(1 - k \right) \overrightarrow{AN} + k \overrightarrow{AC} = \frac{1 - k}{2} \overrightarrow{AB} + k \overrightarrow{AC}$,

所以,
$$\begin{cases} \frac{3}{4}\lambda = \frac{1-k}{2} \\ \frac{1}{4}\lambda = k \end{cases}$$
,解得
$$\begin{cases} \lambda = \frac{4}{7} \\ k = \frac{1}{7} \end{cases}$$
,所以 $\overrightarrow{AP} = \frac{3}{7}\overrightarrow{AB} + \frac{1}{7}\overrightarrow{AC}$,

因此,

$$\overrightarrow{AP} \cdot \overrightarrow{BC} = \frac{1}{7} \left(3\overrightarrow{AB} + \overrightarrow{AC} \right) \left(\overrightarrow{AC} - \overrightarrow{AB} \right) = \frac{1}{7} \left(\overrightarrow{AC}^2 + 2\overrightarrow{AB} \cdot \overrightarrow{AC} - 3\overrightarrow{AB}^2 \right)$$
$$= \frac{1}{7} \times \left(3^2 + 2 \times 4 \times 3 \times \frac{1}{2} - 3 \times 4^2 \right) = -\frac{27}{7}.$$

由
$$D$$
为 AB 的中点,所以 $BD = AD = 2$,又 $\theta = 60^{\circ}$,所以 $DE = 2$,

又
$$\angle EDF = 90^{\circ}$$
,所以 $\angle ADF = 30^{\circ}$,所以 $DF = AD\cos 30^{\circ} = \sqrt{3}$

所以
$$S_{\Delta DEF} = \frac{1}{2}DE \cdot DF = \sqrt{3}$$

$$\pm \frac{DE}{\sin 60^{\circ}} = \frac{BD}{\sin \left[180^{\circ} - \left(60^{\circ} + \theta\right)\right]}, \quad \frac{DF}{\sin 60^{\circ}} = \frac{AD}{\sin \left[180^{\circ} - 60^{\circ} - \left(90^{\circ} - \theta\right)\right]}$$

化简可知:

$$DE = \frac{\sqrt{3}}{\sin(60^{\circ} + \theta)}$$
, $DF = \frac{\sqrt{3}}{\sin(30^{\circ} + \theta)}$, $dec{dec}{dec} S_{\Delta DEF} = \frac{1}{2}DE \cdot DF$

所以
$$S_{\Delta DEF} = \frac{3}{2\sin(60^{\circ} + \theta)\sin(30^{\circ} + \theta)}$$

$$\mathbb{H}\sin\left(60^{\circ} + \theta\right) = \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta$$

$$\sin(30^{\circ} + \theta) = \sin 30^{\circ} \cos \theta + \cos 30^{\circ} \sin \theta$$

$$\mathbb{E}^{3}\sin\left(30^{\circ}+\theta\right) = \frac{1}{2}\cos\theta + \frac{\sqrt{3}}{2}\sin\theta$$

所以
$$\sin(60^{\circ} + \theta)\sin(30^{\circ} + \theta) = \frac{\sqrt{3}}{4} + \frac{1}{2}\sin 2\theta$$

$$\int_{\Delta DEF} S_{\Delta DEF} = \frac{3}{\frac{\sqrt{3}}{2} + \sin 2\theta}$$

由
$$0^{\circ} < \theta < 90^{\circ}$$
,所以当 $\sin 2\theta = 1$,即 $\theta = 45^{\circ}$ 时, $\left(S_{\Delta DEF}\right)_{\min} = 12 - 6\sqrt{3}$

22.
$$\Re: (1) \stackrel{\text{def}}{=} a = 2 \operatorname{pr}, \ g(x) = \log_2(2x+1),$$

则
$$f(x)+g(x)=\log_2 x+\log_2(2x+1)=\log_2(2x^2+x)$$
, 定义域为 $(0,+\infty)$.

由
$$f(x)+g(x)=0$$
, 可得 $\log_2(2x^2+x)=0$, 可得 $2x^2+x-1=0$,

解得
$$x = \frac{1}{2}$$
 或 $x = -1$ (舍去), 因此, 关于 x 的方程 $f(x) + g(x) = 0$ 的解为 $x = \frac{1}{2}$;

(2)
$$\leq x \in [2,8]$$
 $\forall f(x) = \log_2 x \in [1,3]$.

当
$$t \le 1$$
时, $\log_2 x \ge t$ 对任意的 $x \in [2,8]$ 恒成立,则 $h(x) = |f(x)-t| + t = \log_2 x$,

此时,函数
$$y = h(x)$$
在区间[2,8]上为增函数, $h(x)_{max} = h(8) = 3$,合乎题意;

当
$$t \ge 3$$
 时, $\log_2 x \le t$ 对任意的 $x \in [2,8]$ 恒成立,则 $h(x) = |f(x)-t| + t = 2t - \log_2 x$,

此时,函数
$$y = h(x)$$
在区间 $[2,8]$ 上为减函数, $h(x)_{max} = h(2) = 2t - 1 = 3$,解得 $t = 2$,不合乎题意;

当1f(x)-t=0, 得
$$x = 2^t$$
, 此时 $h(x) = \begin{cases} 2t - \log_2 x, 2 \le x \le 2^t \\ \log_2 x, 2^t < x \le 8 \end{cases}$,

所以,函数
$$y = h(x)$$
在区间 $\begin{bmatrix} 2,2^t \end{bmatrix}$ 上为减函数,在区间 $\begin{bmatrix} 2^t,8 \end{bmatrix}$ 上为增函数.

 $\therefore h(2) = 2t - 1$, h(8) = 3 , 由于 $h(x)_{\text{max}} = \max\{2t - 1, 3\} = 3$, 所以 $2t - 1 \le 3$, 解得 $t \le 2$. 此时, $1 < t \le 2$.

综上所述, 实数t的取值范围是 $(-\infty,2]$;

(3)
$$g(x)-f(x) = \log_2(ax+1)-\log_2 x = \log_2(a+\frac{1}{x}),$$

由于内层函数 $u = a + \frac{1}{x}$ 在区间 [m, m+1](m>0) 为减函数,外层函数 $y = \log_2 u$ 为增函数,

所以,函数y = g(x) - f(x)在区间[m, m+1]上为减函数,

所以
$$y_{\text{max}} = \log_2\left(a + \frac{1}{m}\right)$$
, $y_{\text{min}} = \log_2\left(a + \frac{1}{m+1}\right)$,

由题意可得
$$y_{\max} - y_{\min} = \log_2\left(a + \frac{1}{m}\right) - \log_2\left(a + \frac{1}{m+1}\right) \le 1$$
,可得 $a + \frac{1}{m} \le 2\left(a + \frac{1}{m+1}\right)$,

所以,
$$a \ge \frac{1}{m} - \frac{2}{m+1} = \frac{1-m}{m(m+1)}$$
.

①
$$\stackrel{\text{def}}{=} m = 1 \text{ Iff}, \quad \frac{1-m}{m(m+1)} = 0;$$

②当
$$m \in \left[\frac{1}{2},1\right)$$
时, $\diamondsuit t = 1 - m \in \left(0,\frac{1}{2}\right]$, $\Game y = \frac{1-m}{m(m+1)}$,

可得
$$y = \frac{t}{(1-t)(2-t)} = \frac{t}{t^2+2-3t} = \frac{1}{t+\frac{2}{t}-3}$$
.

下面利用定义证明函数 $\varphi(t) = t + \frac{2}{t} - 3$ 在区间 $\left(0, \frac{1}{2}\right]$ 上的单调性,

任取
$$t_1$$
、 $t_2 \in \left(0, \frac{1}{2}\right]$ 且 $t_1 < t_2$,即 $0 < t_1 < t_2 \le \frac{1}{2}$,

$$\varphi(t_1) - \varphi(t_2) = \left(t_1 + \frac{2}{t_1} - 3\right) - \left(t_2 + \frac{2}{t_2} - 3\right) = \left(t_1 - t_2\right) + \left(\frac{2}{t_1} - \frac{2}{t_2}\right) = \left(t_1 - t_2\right) + \frac{2\left(t_2 - t_1\right)}{t_1 t_2}$$

$$=\frac{(t_1-t_2)(t_1t_2-2)}{t_1t_2},$$

所以,函数
$$\varphi(t) = t + \frac{2}{t} - 3$$
在区间 $\left(0, \frac{1}{2}\right]$ 上单调递减,

当
$$t = \frac{1}{2}$$
时,函数 $y = \frac{1}{t + \frac{2}{t} - 3}$ 取得最大值 $\frac{2}{3}$.

综上所述,函数
$$y = \frac{1-m}{m(m+1)}$$
 在 $m \in \left[\frac{1}{2}, 1\right]$ 上的最大值为 $\frac{2}{3}$, $\therefore a \ge \frac{2}{3}$.

因此, 实数
$$a$$
 的取值范围是 $\left[\frac{2}{3}, +\infty\right)$.