镇江市 2021 届高三名校 10 月考试卷

一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分。在每小题给出的四个选项中, 只有一

1. 己知集合 $A = \{y \mid y = 3^x\}$, $B = \{0,1,2,3\}$, 则 $A \cap B = ($

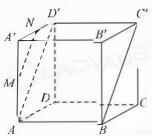
项是符合题目要求的。

2020年10月5日

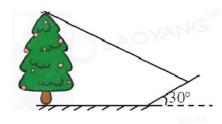
A. $\{1, 2, \dots, 2, $	3} B.	$(0,+\infty)$	C.	$\{0,1,2\}$	D.	$[0,+\infty)$
2. 复数z	(1-i) = 2i (i)	为虚数单位),则 z 🤄	等于	()		
A. $1+i$	В.	1 - i	C.	-1 + i	D.	-1 - i
3. 若从「	甲、乙、丙、丁	4人中选出3名代表	是参加	口学校会议,则甲	被选品	中的概率为()
A. $\frac{1}{4}$	В.	$\frac{1}{3}$	C.	$\frac{1}{2}$	D.	$\frac{3}{4}$
4. 下列	函数中,既是奇	函数又在区间(-1,1)	上是	上增函数的是 ()	
$A. y = \frac{1}{x}$	В.	$y = \tan x$	C.	$y = -\sin x$	D.	$y = \cos x$
5. 若 sir sir		则 $ an lpha$ 等于(
A2	В.	3 4	C.	$-\frac{4}{3}$	D.	. 2
6. 已知	菱形 ABCD 的过	上长为4, ZABC =	: 60°	, <i>E</i> 是 <i>BC</i> 的中	点,	
$\overrightarrow{DF} = -2$	\overrightarrow{AF} , $\bigcup \overrightarrow{AE} \cdot \overrightarrow{B}$	$\overrightarrow{BF} = ($				
A. 24		B7				
C10		D12				
7. 《周鹘	算经》是中国古	「代重要的数学著作	Ξ,	其记载的"日月历	去"曰:	"阴阳之数,日月
之法,十	九岁为一章,四]章为一部,部七十	一六岁	3,二十部为一道	族,遂-	千百五二十
岁,	生数皆终,万物	7复苏,天以更元作	纪月	了",某老年公寓	住有 20)位老人,他们的年
龄(都为	正整数) 之和怡	好为一遂,其中年	长者	台是奔百之龄	(年龄)	个于90至100),其
余 19 人	的年龄依次相差	一岁,则年长者的	年龄	为()		
A. 94	В.	95	C.	96	D	. 98

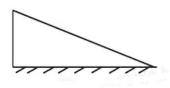

- 8. 已知函数 $f(x) = \begin{cases} \ln x, x > 1 \\ \frac{1}{4}x + 1, x \le 1 \end{cases}$, g(x) = ax 则方程 g(x) = f(x) 恰有两个不同的实根
- 时, 实数 a 的取值范围是(
- A. $\left(0,\frac{1}{2}\right)$

- B. $\left|\frac{1}{4}, \frac{1}{e}\right|$ C. $\left(0, \frac{1}{4}\right]$ D. $\left(\frac{1}{4}, e\right)$
- 二、选择题: 本大题共 4 小题, 每小题 5 分, 共 20 分。在每小题给出的选项中, 有多项符 合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分。
- 9. 设正实数 a,b 满足 a+b=1,则下列结论正确的是(
- A. $\frac{1}{a} + \frac{1}{b}$ 有最小值 4


B. \sqrt{ab} 有最小值 $\frac{1}{2}$

C. $\sqrt{a} + \sqrt{b}$ 有最大值 $\sqrt{2}$


- D. $a^2 + b^2$ 有最小值 $\frac{1}{2}$
- 10. 将函数 $y = \cos x$ 的图象向左平移 $\frac{3\pi}{2}$ 个单位,得到函数 y = f(x) 的函数图象,则下列 说法正确的是(
- A. y = f(x) 是奇函数
- B. y = f(x)的周期是 π
- C. y = f(x) 的图象关于直线 $x = \frac{\pi}{2}$ 对称 D. y = f(x) 的图象关于 $\left(-\frac{\pi}{2}, 0\right)$ 对称
- 11. 如图, 正方体 ABCD A'B'C'D' 的棱长为 1, 则下列四个命题正确的是(
- A. 若点M, N分别是线段A'A, A'D'的中点,则MN//BC'
- B. 点 C 到平面 ABC'D' 的距离为 $\sqrt{2}$
- C. 直线 BC 与平面 ABC'D'所成的角等于 $\frac{\pi}{4}$
- D. 三棱柱 AA'D'-BB'C' 的外接球的表面积为 3π

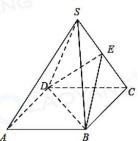


- A. 当a=1时,f(x)在 $(-\infty,0)$ 上单调递增
- B. 当 a = 0 时, $f(x) \ln x \ge 3$ 在 $x \in (0, +\infty)$ 上恒成立
- C. 对任意 a < 0, f(x) 在 $(-\infty, 0)$ 上一定存在零点
- D. 存在a > 0, f(x)有唯一极小值

- 三、填空题:本大题共4小题,每小题5分,共20分。
- 13. 已知随机变量 X 服从正态分布 $N(1,\sigma^2)$, 且 P(X<2)=0.7, 则 P(0< X<1)= _____.
- 14. 已知等比数列 $\{a_n\}$ 的公比为 2,前 n 项和为 S_n ,则 $\frac{S_4}{a_2} =$ _____.

(图 1)

(图 2)


- 16. 已知实数 α , β 满足 $\alpha e^{\alpha} = e^{3}$, $\beta(\ln \beta 1) = e^{4}$, 其中 e 是自然对数的底数,则 $\alpha\beta = _$
- 四、解答题:本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (本小题满分 10 分)已知平面向量 $\vec{a} = (2\cos\theta, 1)$, $\vec{b} = (1, 3\sin\theta)$.
- (1) 若 $\vec{a}//\vec{b}$, 求 $\sin 2\theta$ 的值; (2) 若 $\vec{a}\perp\vec{b}$, 求 $\tan\left(\theta+\frac{\pi}{4}\right)$ 的值.
- 18. (本小题满分 12 分)如图,正四棱锥S-ABCD中,SA=4, AB=2, E为 SC 中点.

- (1) 求证: SA// 平面BDE;
- (2) 求异面直线SA与BE 所成角的余弦值.
- 19. (本小题满分 12 分)在① $a_3 = 5$, $a_2 + a_5 = 6b_2$; ② $b_2 = 2$, $a_3 + a_4 = 3b_3$;
- ③ $S_3 = 9$, $a_4 + a_5 = 8b_2$,这三个条件中任选一个,补充在下面问题中,并解答.

已知等差数列 $\{a_n\}$ 的公差为d(d>1),前n项和为 S_n ,等比数列 $\{b_n\}$ 的公比为q,且

$$a_1 = b_1$$
, $d = q$,

- (1) 求数列 $\{a_n\}$, $\{b_n\}$ 的通项公式.
- (2) 记 $c_n = \frac{a_n}{b_n}$, 求数列 $\{c_n\}$ 的前n项和 T_n .

注: 如果选择多个条件分别解答,按第一个解答计分.

- 20. (本小题满分 12 分)华为手机的"麒麟 970"芯片在华为处理器排行榜中最高主频
- 2.4GHz,同时它的线程结构也做了很大的改善,整个性能及效率至少提升了50%,科研人员曾就是否需采用西门子制程这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片芯片进行研究,结果发现使用了该工艺的30片芯片有28片线程结构有很大的改善,没有使用该工艺的20片芯片中有12片线程结构有很大的改善.
- (1) 完善列联表判断:这次实验是否有99.5%的把握认为"麒麟970"芯片的线程结构有很大的改善与使用西门子制程这一工艺标准有关?
- (2)在"麒麟 970"芯片的线程结构有很大的改善后,接下来的生产制作还需对芯片的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆

的过程中,前三个环节每个环节生产正常的概率为 $\frac{2}{3}$,每个环节出错需要修复的费用均为

200 元,第四环节生产正常的概率为 $\frac{3}{4}$,此环节出错需要修复的费用为 100 元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)

参考公式:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, $n=a+b+c+d$.

参考数据:

$P(K^2 \geqslant k_0)$	0.15	0.10	0.05	0.025	0.01	0.005	0.001
k_0	2.072	2.076	3.841	5.024	6.635	7.879	10.828

- 21. (本小题满分 12 分)已知抛物线C的顶点在原点,焦点在坐标轴上,点A(1,2) 为抛物线C上一点. (1) 求C的方程;
- (2) 若点 B(1,-2)在 C 上,过 B 作 C 的两弦 BP 与 BQ ,若 k_{BP} k_{BQ} = -2 ,求证:直线 PQ 过定点.

- 22. (本小题满分 12 分)已知函数 $f(x) = e^x 1 x ax^2$.
 - (1) 当 $x \ge 0$ 时,若不等式 $f(x) \ge 0$ 恒成立,求实数a的取值范围;
 - (2) 若x > 0, 证明 $(e^x 1)\ln(x+1) > x^2$.

参考答案

一、单选题

二、多选题

三、填空题

13. 0.2 14.
$$\frac{15}{2}$$
 15. $(6+\sqrt{3})$ 米 (不写单位扣分) 16. e^4

四、解答题

17. 已知平面向量
$$\vec{a} = (2\cos\theta, 1)$$
, $\vec{b} = (1, 3\sin\theta)$.

(1) 若 $\vec{a}//\vec{b}$, 求 $\sin 2\theta$ 的值;

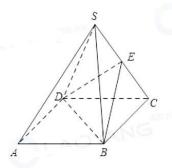
(2) 若
$$\vec{a} \perp \vec{b}$$
, 求 $\tan\left(\theta + \frac{\pi}{4}\right)$ 的值.

【解析】

(1) : 平面向量
$$\vec{a} = (2\cos\theta, 1)$$
, $\vec{b} = (1, 3\sin\theta)$, $\vec{a} / / \vec{b}$,

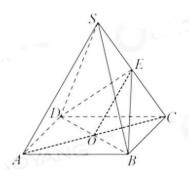
$$\therefore (2\cos\theta) \times (3\sin\theta) - 1 \times 1 = 0,$$

解得 $6\sin\theta\cos\theta-1=3\sin2\theta-1=0$,


$$\therefore \sin 2\theta = \frac{1}{3}.$$

(2)
$$\vec{a} \perp \vec{b}$$
, $\vec{a} \cdot \vec{a} \cdot \vec{b} = 2\cos\theta + 3\sin\theta = 0$,

若
$$\cos \theta = 0$$
,则 $|\sin \theta| = \sqrt{1 - \cos^2 \theta} = 1$,不满足上式,舍, ······7 分


$$\therefore \tan(\theta + \frac{\pi}{4}) = \frac{\tan \theta + 1}{1 - \tan \theta} = \frac{-\frac{2}{3} + 1}{1 - (-\frac{2}{3})} = \frac{1}{5} .$$

- 18. 如图,正四棱锥S-ABCD中,SA=4,AB=2,E为SC中点.
- (1) 求证: SA// 平面 BDE;
- (2) 求异面直线 SA 与 BE 所成角的余弦值.

证明: (1) 连接AC, 交BD于点O, 连接OE.

- :: 四棱锥 S-ABCD 为正四棱锥,
- :. 四边形 ABCD 为正方形, ······2 分
- ∴ *O* 为 *AC* 中点,
- :: E 为 SC 中点,
- ∴ OE 为 △SAC 的中位线,
- $\therefore OE//SA$,3 ½
- :: OE ⊂ 平面 BDE, SA ⊄ 平面 BDE,
- ∴ SA// 平面 BDE.6 分

(2) 由 (1) 知: OE//SA,

故 ∠BEO (或其补角) 为异面直线 SA 与 BE 所成的角. ······8 分

$$\therefore SA = SB = SC = SD = 4$$
, $AB = 2$,

$$\therefore OE = 2, \quad OB = OD = \frac{1}{2}BD = \sqrt{2}.$$

由四棱锥 S-ABCD 为正四棱锥知: $\triangle SCB \cong \triangle SCD$.

:: E 为 SC 中点,

$$\therefore EB = ED$$
,

$$\therefore OE \perp BD$$
, 即 $\angle BOE = 90^{\circ}$10 分

$$\therefore BE = \sqrt{OE^2 + OB^2} = \sqrt{6} ,$$

$$\therefore \cos \angle BEO = \frac{OE}{BE} = \frac{2}{\sqrt{6}} = \frac{\sqrt{6}}{3},$$

19. 在① $a_3 = 5$, $a_2 + a_5 = 6b_2$; ② $b_2 = 2$, $a_3 + a_4 = 3b_3$; ③ $S_3 = 9$, $a_4 + a_5 = 8b_2$, 这 三个条件中任选一个,补充在下面问题中,并解答.

已知等差数列 $\{a_n\}$ 的公差为d(d>1),前n项和为 S_n ,等比数列 $\{b_n\}$ 的公比为 \mathbf{q} ,且 $a_1=b_1$,d=q,_______.

- (1) 求数列 $\{a_n\}$, $\{b_n\}$ 的通项公式.
- (2) 记 $c_n = \frac{a_n}{b_n}$,求数列 $\{c_n\}$,的前n项和 T_n . 注:如果选择多个条件分别解答,按第一个解答计分.

方案一: 选条件①

(1) :
$$a_3 = 5$$
, $a_2 + a_5 = 6b_2$, $a_1 = b_1$, $d = q$, $d > 1$

$$\therefore \begin{cases} a_1 + 2d = 5 \\ 2a_1 + 5d = 6a_1 d \end{cases}$$

$$\therefore \begin{cases} b_1 = 1 \\ q = 2 \end{cases}$$

$$\therefore \alpha_n = \alpha_1 + (n-1)d$$

$$=2n-1$$

$$b_n = b_1 q^{n-1} = 2^{n-1}$$

$$(2) :: c_n = \frac{a_n}{b_n}$$

$$\therefore c_n = \frac{2n-1}{2^{n-1}} = (2n-1) \times (\frac{1}{2})^{n-1}$$

$$\therefore T_n = 1 + 3 \times \frac{1}{2} + 5 \times \left(\frac{1}{2}\right)^2 + \dots + (2n - 3) \times \left(\frac{1}{2}\right)^{n-2} + (2n - 1) \times \left(\frac{1}{2}\right)^{n-1}$$

$$\therefore \frac{1}{2}T_n = \frac{1}{2} + 3 \times \left(\frac{1}{2}\right)^2 + 5 \times \left(\frac{1}{2}\right)^3 + \dots + (2n-3) \times \left(\frac{1}{2}\right)^{n-1} + (2n-1) \times \left(\frac{1}{2}\right)^n$$

$$\therefore \frac{1}{2}T_n = 1 + 2\left[\frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1}\right] - (2n-1) \times \left(\frac{1}{2}\right)^n \dots 9$$

$$= 1 + 2 \times \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^{n-1} \right]}{1 - \frac{1}{2}} - (2n - 1) \times \left(\frac{1}{2} \right)^{n}$$

$$=3-(2n+3)\times\left(\frac{1}{2}\right)^n$$

$$T_n = 6 - (2n+3) \times \left(\frac{1}{2}\right)^{n-1}$$

-----12 分

方案二: 选条件②

(1)
$$\therefore b_2 = 2, a_3 + a_4 = 3b_3, a_1 = b_1, d = q, d > 1$$

$$\therefore \begin{cases} a_1 d = 2 \\ 2a_1 + 5d = 3a_1 d^2 \end{cases}$$

$$\therefore \begin{cases} a_1 d = 2 \\ 2a_1 + 5d = 6d \end{cases}$$

$$\therefore \begin{cases} b_1 = 1 \\ q = 2 \end{cases}$$

$$\therefore a_n = a_1 + (n-1)d$$

$$b_n = b_1 q^{n-1} = 2^{n-1} \qquad \dots 7$$

$$(2) :: c_n = \frac{a_n}{b_n}$$

$$\therefore c_n = \frac{2n-1}{2^{n-1}} = (2n-1) \times (\frac{1}{2})^{n-1}$$

$$T_n = 1 + 3 \times \frac{1}{2} + 5 \times \left(\frac{1}{2}\right)^2 + \dots + (2n - 3) \times \left(\frac{1}{2}\right)^{n-2} + (2n - 1) \times \left(\frac{1}{2}\right)^{n-1}$$

$$\therefore \frac{1}{2}T_n = \frac{1}{2} + 3 \times \left(\frac{1}{2}\right)^2 + 5 \times \left(\frac{1}{2}\right)^3 + \dots + (2n-3) \times \left(\frac{1}{2}\right)^{n-1} + (2n-1) \times \left(\frac{1}{2}\right)^n$$

$$\therefore \frac{1}{2}T_n = 1 + 2\left[\frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1}\right] - (2n-1) \times \left(\frac{1}{2}\right)^n$$

$$= 1 + 2 \times \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^{n-1} \right]}{1 - \frac{1}{2}} - (2n - 1) \times \left(\frac{1}{2} \right)^{n}$$

$$=3-(2n+3)\times\left(\frac{1}{2}\right)^n$$

$$\therefore T_n = 6 - (2n+3) \times \left(\frac{1}{2}\right)^{n-1}$$

方案三: 选条件③

$$\therefore S_3 = 9, a_4 + a_5 = 8b_2, a_1 = b_1, d = q, d > 1$$

$$\therefore \begin{cases} a_1 + d = 3 \\ 2a_1 + 7d = 8a_1 d \end{cases}$$

解得
$$\begin{cases} a_1 = 1 \\ d = 2 \end{cases} \stackrel{\text{def}}{= \frac{21}{8}}$$
 (舍去)
$$d = \frac{3}{8}$$

$$\begin{cases} b_1 = 1 \\ q = 2 \end{cases}$$

$$(2) :: c_n = \frac{a_n}{b_n}$$

$$\therefore c_n = \frac{2n-1}{2^{n-1}} = (2n-1) \times \left(\frac{1}{2}\right)^{n-1}$$

$$T_n = 1 + 3 \times \frac{1}{2} + 5 \times \left(\frac{1}{2}\right)^2 + \dots + (2n - 3) \times \left(\frac{1}{2}\right)^{n-2} + (2n - 1) \times \left(\frac{1}{2}\right)^{n-1}$$

$$\therefore \frac{1}{2}T_n = \frac{1}{2} + 3 \times \left(\frac{1}{2}\right)^2 + 5 \times \left(\frac{1}{2}\right)^3 + \dots + (2n-3) \times \left(\frac{1}{2}\right)^{n-1} + (2n-1) \times \left(\frac{1}{2}\right)^n$$

$$\therefore \frac{1}{2}T_n = 1 + 2\left[\frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1}\right] - (2n-1) \times \left(\frac{1}{2}\right)^n$$

$$= 1 + 2 \times \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^{m-1} \right]}{1 - \frac{1}{2}} - (2n - 1) \times \left(\frac{1}{2} \right)^{n}$$

$$=3-(2n+3)\times\left(\frac{1}{2}\right)^n$$

$$T_n = 6 - (2n+3) \times \left(\frac{1}{2}\right)^{n-1}$$

- 20. 华为手机的"麒麟 970"芯片在华为处理器排行榜中最高主频 2.4GHz,同时它的线程结构也做了很大的改善,整个性能及效率至少提升了 50%,科研人员曾就是否需采用西门子制程这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的 50 片芯片进行研究,结果发现使用了该工艺的 30 片芯片有 28 片线程结构有很大的改善,没有使用该工艺的 20 片芯片中有 12 片线程结构有很大的改善.
- (1) 用列联表判断: 这次实验是否有 99.5%的把握认为"麒麟 970"芯片的线程结构有很大的改善与使用西门子制程这一工艺标准有关?
- (2) 在"麒麟 970"芯片的线程结构有很大的改善后,接下来的生产制作还需对芯片的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为 $\frac{2}{3}$,每个环节出错需要修复的费用均为200元,第四环节生产正常的概率为 $\frac{3}{4}$,此环节出错需要修复的费用为 100元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)

参考公式:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, $n=a+b+c+d$.

参考数据:

$P(K^2 \geqslant k_0)$	0.15	0.10	0.05	0.025	0.01	0.005	0.001
k_0	2.072	2.076	3.841	5.024	6.635	7.879	10.828

(1) 由题意列联表为:

0.	使用工艺	不使用工艺	合计
合格	28	12	40
不合格	2	8	10
合计	30	20	50

.....1分

(2) 设A表示检测到第i个环节有问题(i=1, 2, 3, 4), X表示成为一个合格的多晶的晶圆需消耗的费用,则X的可能取值为: 0, 100, 200, 300, 400, 500, 600, 700,

$$X = 0$$
 表明四个环节均正常 $P(X = 0) = P(\overline{A_1 A_2 A_3 A_4}) = \left(\frac{2}{3}\right)^3 \cdot \frac{3}{4} = \frac{24}{108}$

$$X = 100$$
表明第四环节有问题 $P(X = 100) = P(\overline{A_1 A_2 A_3} A_4) = \left(\frac{2}{3}\right)^3 \cdot \frac{1}{4} = \frac{8}{108}$

$$X = 200$$
 表明前三环节有一环节有问题 $P(X = 200) = C_3^1 \left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right)^2 \cdot \frac{3}{4} = \frac{36}{108}$,

X = 300 表明前三环节有一环节及第四环节有问题

$$P(X=300) = C_3^1 \left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right)^2 \cdot \frac{1}{4} = \frac{12}{108}$$

X = 400 表明前三环节有两环节有问题 $P(X = 400) = C_3^2 \left(\frac{1}{3}\right)^2 \cdot \left(\frac{2}{3}\right) \cdot \frac{3}{4} = \frac{18}{108}$,

X=500表明前三环节有两环节及第四环节有问题

$$P(X = 500) = C_3^2 \left(\frac{1}{3}\right)^2 \cdot \left(\frac{2}{3}\right) \cdot \frac{1}{4} = \frac{6}{108}$$

$$X = 600$$
 表明前三环节有问题 $P(X = 600) = P(A_1 A_2 A_3 \overline{A_4}) = \left(\frac{1}{3}\right)^3 \cdot \frac{3}{4} = \frac{3}{108}$

$$X = 700$$
 表明四个环节均有问题 $P(X = 700) = P(A_1 A_2 A_3 A_4) = \left(\frac{1}{3}\right)^3 \cdot \frac{1}{4} = \frac{1}{108}$.

费用 X分布列为:

X	0	100	200	300	400	500	600	700
Р	$\frac{24}{108}$	8 108	$\frac{36}{108}$	12 108	18 108	$\frac{6}{108}$	3 108	$\frac{1}{108}$

-----9分

故
$$E(X) = \frac{0 \times 24 + 100 \times 8 + 200 \times 36 + 300 \times 12 + 400 \times 18 + 500 \times 6 + 600 \times 3 + 700 \times 1}{108}$$

=225 (元),

故大约需要耗费 225 元.12 分

- 21. 已知抛物线C的顶点在原点, 焦点在坐标轴上, 点A(1,2) 为抛物线C上一点.
 - (1) 求*C*的方程;
- (2) 若点 B(1,-2) 在 C 上,过 B 作 C 的两弦 BP 与 BQ ,若 k_{BP} k_{BQ} = -2 ,求证:直线 PQ 过定点.

【解析】

(1) 当焦点在x轴时,设C的方程为 $x^2 = 2py$,代人点A(1,2)得2p = 4,即 $y^2 = 4x$.

当焦点在y轴时,设C的方程为 $x^2 = 2py$,代人点A(1,2)得 $2p = \frac{1}{2}$,即 $x^2 = \frac{1}{2}y$,

(2) 因为点 B(1,-2) 在 C 上,所以曲线 C 的方程为 $y^2 = 4x$.

设点 $P(x_1, y_1), Q(x_2, y_2)$,

直线 PQ: x = my + b, 显然 m 存在, 联立方程有:

$$\therefore k_{BP} \cdot k_{BQ} = -2, \therefore \frac{y_1 + 2}{x_1 - 1} \cdot \frac{y_2 + 2}{x_2 - 1} = -2, \therefore \frac{4}{y_1 - 2} \cdot \frac{4}{y_2 - 2} = -2,$$

直线 PQ: x = my + b = my + 3 - 2m 即 x - 3 = m(y - 2), ... 直线 PQ 过定点(3,2).

-----12 分

- 22. 已知函数 $f(x) = e^x 1 x ax^2$.
 - (1) 当 $x \ge 0$ 时,若不等式 $f(x) \ge 0$ 恒成立,求实数 a 的取值范围;
 - (2) 若x > 0, 证明 $(e^x 1)\ln(x+1) > x^2$.

(1) 由条件得 $f'(x) = e^x - 1 - 2ax$,

①当 $2a \le 1$ 时,在 $\left[0,+\infty\right]$ 上, $h'(x) \ge 0$,h(x) 单调递增

$$\therefore h(x) \ge h(0), \text{ } \exists f'(x) \ge f'(0) = 0,$$

$$\therefore f(x)$$
在 $[0,+\infty]$ 上为增函数, $\therefore f(x) \ge f(0) = 0$

解得 $x = \ln 2a$, 在 $[0, \ln 2a]$ 上, h'(x) < 0, h(x) 单调递减,

∴当
$$x \in (0, \ln 2a)$$
 时,有 $h(x) < h(0) = 0$,即 $f'(x) < f'(0) = 0$,

f(x)在 $(0,\ln 2a)$ 上为减函数, ∴ f(x) < f(0) = 0, 不合题意.

综上实数
$$a$$
 的取值范围为 $\left(-\infty,\frac{1}{2}\right]$6 分

(2) 由 (1) 得, 当
$$a = \frac{1}{2}$$
, $x > 0$ 时, $e^x > 1 + x + \frac{x^2}{2}$,

$$\mathbb{E}[e^x - 1 > +x + \frac{x^2}{2} = \frac{x^2 + 2x}{2}],$$

要证不等式 $(e^x-1)\ln(x+1) > x^2$, 只需证明 $e^x-1 > \frac{x^2}{\ln(x+1)}$, 只需证明

设
$$F(x) = \ln(x+1) - \frac{2x}{x+2}(x>0)$$
,则 $F'(x) = \frac{1}{x+1} - \frac{x^2}{(x+2)^2} = \frac{x^2}{(x+1)(x+2)^2}$,

∴当
$$x > 0$$
 时, $F'(x) > 0$ 恒成立,故 $F(x)$ 在 $(0,+∞)$ 上单调递增, ……………10 分