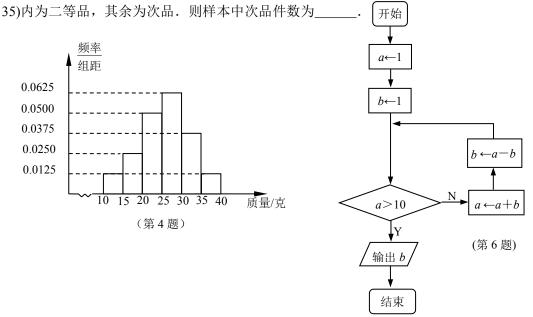
班级

-、填空题:

- 设全集 $U = \{x \mid x < 5, x \in \mathbb{N}^*\}$,集合 $A = \{1, 2\}$, $B = \{2, 4\}$,则 $\mathbb{C}_U(A \cup B) = \underline{\hspace{1cm}}$. 1.
- 复数 $z = \frac{-i}{2+i}$ (i 为虚数单位)在复平面内对应的点在第_____象限. 2.
- 3. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先 后抛掷 2 次,则出现向上的点数之和大于 10 的概率为 .
- 4. 对一批产品的质量(单位:克)进行抽样检测,样本容量为800,检测结果的频率分布直方 图如图所示. 根据标准,单件产品质量在区间[25,30]内为一等品,在区间[20,25]和[30,

频率 组距 0.0625 0.0500 0.0375 0.0250 0.0125 质量/克 (第4题)



- **5.** 在平面直角坐标系 xOy 中,若抛物线 $y^2 = 2px$ 的焦点恰好是双曲线 $\frac{x^2}{8} \frac{y^2}{4} = 1$ 的右焦点,
- **6.** 如图是一个算法流程图,则输出的 b 的值为 .
- 7. 设数列 $\{a_n\}$ 为等差数列,其前n项和为 S_n ,已知 $a_1 + a_4 + a_7 = 60$, $a_2 + a_5 + a_8 = 51$,若对任意 $n \in \mathbb{N}^*$,都有 $S_n \leq S_k$ 成立,则正整数 k的值为____.
- 8. 如图,该几何体由底面半径相同的圆柱与圆锥两部分组成,且圆柱 (第8题) 的高与底面半径相等. 若圆柱与圆锥的侧面积相等,则圆锥与圆柱的高之比为
- **9.** 在平面直角坐标系 xOy 中,圆 C 经过 M(1, 3), N(4, 2), P(1, -7) 三点,且直线 l: x + ay - 1 = 0 ($a \in \mathbb{R}$)是圆 C 的一条对称轴,过点 A(-6, a) 作圆 C 的一条切线,切点为 B,则线段 AB 的长度为 .

10. 已知菱形 ABCD 中,对角线 $AC = \sqrt{3}$, BD = 1, $P \neq AD$ 边上的动点(包括端点),则 $\overrightarrow{PB} \cdot \overrightarrow{PC}$ 的取值范围为_____.

二、解答题:

- 1. 已知函数 $f(x) = 2\sin\left(x + \frac{\pi}{3}\right) \cdot \cos x$.
 - (1) 若 $0 \le x \le \frac{\pi}{4}$, 求函数f(x)的值域;
 - (2) 设 $\triangle ABC$ 的三个内角 A, B, C 所对的边分别为 a, b, c. 若 A 为锐角且 $f(A) = \frac{\sqrt{3}}{2}$, b = 2, c = 3, 求 $\cos(A B)$ 的值.

- 2. 在平面直角坐标系 xOy 中,已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{\sqrt{3}}{2}$,短轴长为 2.
 - (1) 求椭圆 C 的标准方程;
 - (2)设 P 为椭圆上顶点,点 A 是椭圆 C 上异于顶点的任意一点,直线 PA 交 x 轴于点 M.点 B 与点 A 关于 x 轴对称,直线 PB 交 x 轴于点 N. 问:在 y 轴的正半轴上是否存在点 Q,使得 $\angle OQM = \angle ONQ$?若存在,求点 Q 的坐标;若不存在,请说明理由.

三、附加题:

- 1. 在平面直角坐标系 xOy 中,圆 C 的参数方程为 $\begin{cases} x = 3 + 2\cos\theta, \\ y = -4 + 2\sin\theta \end{cases}$ (θ 为参数).
 - (1) 以原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
 - (2) 已知 A(-2, 0), B(0, 2), 圆 C 上任意一点 M(x, y), 求公ABM 面积的最大值.

- 2. 一个暗箱中有形状和大小完全相同的 3 只白球与 2 只黑球,每次从中取出一只球,取到白球得 2 分,取到黑球得 3 分. 甲从暗箱中有放回地依次取出 3 只球.
 - (1) 求甲三次都取得白球的概率;
 - (2) 求甲总得分的分布列和数学期望.

仪征中学 2019 届高考考前数学保温练 2 答案

一、填空题:

1.
$$\{3\}$$
 2. Ξ 3. $\frac{1}{12}$ 4. 200 5. $x = -2\sqrt{3}$ 6. 8 7. 10 8. $\sqrt{3}$ 9. $2\sqrt{7}$ 10. $\left[\frac{1}{2}, \frac{3}{2}\right]$

二、解答题:

1.#\(\text{if}\): $f(x) = (\sin x + \sqrt{3}\cos x)\cos x = \sin x \cos x + \sqrt{3}\cos^2 x$

(2) 由 $f(A) = \sin(2A + \frac{\pi}{3}) + \frac{\sqrt{3}}{2}$, 得 $\sin(2A + \frac{\pi}{3}) = 0$, 又 $0 < A < \frac{\pi}{2}$, 所以 $\frac{\pi}{3} < 2A + \frac{\pi}{3} < \frac{4\pi}{3}$, 所以 $2A + \frac{\pi}{3} = \pi$, 即 $A = \frac{\pi}{3}$,8 分由余弦定理 $a^2 = b^2 + c^2 - 2bc\cos A = 7$, 得 $a = \sqrt{7}$,

因为
$$b < a$$
, 所以 $B < A$, 所以 $\cos B = \sqrt{1 - \sin^2 B} = \sqrt{1 - \left(\frac{\sqrt{21}}{7}\right)^2} = \frac{2\sqrt{7}}{7}$, ……12 分

所以
$$\cos(A-B) = \cos A \cos B + \sin A \sin B = \frac{1}{2} \times \frac{2\sqrt{7}}{7} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{21}}{7} = \frac{5\sqrt{7}}{14}$$
.14 分

- 2. 解: (1) 设椭圆的焦距为 2c,由题可知 $\begin{cases} b=1,\\ \frac{c}{a}=\sqrt{3},\\ a^2=b^2+c^2, \end{cases}$ 解得 $a^2=4$. 所以椭圆 C 的方程为 $\frac{x^2}{4}+y^2=1$. ……4 分

设
$$M(x_M, 0)$$
,同理得 $x_M = \frac{m}{1+n}$8 分

假设存在点 $Q(0, y_Q)$,使得 $\angle OQM = \angle ONQ$ 恒成立.

因为点A与点B关于x轴对称,所以A(m, -n).

由
$$\tan \angle OQM = \tan \angle ONQ$$
,得 $\frac{|x_M|}{|y_Q|} = \frac{|y_Q|}{|x_N|}$,即 $y_Q^2 = |x_M||x_N|$ 10 分 因为 $x_N = \frac{m}{1-n}$, $x_M = \frac{m}{1+n}$, $\frac{m^2}{4} + n^2 = 1$,所以 $y_Q^2 = |x_M||x_N| = \frac{m^2}{1-n^2} = 4$.

又
$$y_o > 0$$
,所以 $y_o = 2$. 经验证, 当 $y_o = 2$ 时, $\angle OQM = \angle OQR$.

所以y轴的正半轴上存在点Q(0, 2),使得 $\angle OQM = \angle OQR$ 恒成立. ······14 分

三、附加题:

1. **解:** (1) 圆 *C* 的参数方程为 $\begin{cases} x = 3 + 2\cos\theta, \\ y = -4 + 2\sin\theta \end{cases}$ (θ 为参数),

所以普通方程为 $(x-3)^2+(y+4)^2=4$.

$$x = \rho \cos \theta$$
, $y = \rho \sin \theta$, 可得 $(\rho \cos \theta - 3)^2 + (\rho \sin \theta + 4)^2 = 4$,

化简,圆 C的极坐标方程为 $\rho^2 - 6\rho\cos\theta + 8\rho\sin\theta + 21 = 0$.

(2) 点 M(x, y)到直线 AB: x-y+2=0 的距离为 $d=\frac{|2\cos\theta-2\sin\theta+9|}{\sqrt{2}}$,6 分

$$\triangle ABM$$
 的面积 $S = \frac{1}{2} \times |AB| \times d = |2\cos\theta - 2\sin\theta + 9| = \left|2\sqrt{2}\sin\left(\frac{\pi}{4} - \theta\right) + 9\right|$,

所以 $\triangle ABM$ 面积的最大值为 9+2 $\sqrt{2}$.

2. 解: (1) 记事件 A 表示甲取球时取得白球,则 $P(A) = \frac{C_3}{C_5} = \frac{3}{5}$2 分

所以甲三次都取得白球的概率为
$$P = \left(\frac{3}{5}\right)^3 = \frac{27}{125}$$
.4 分

(2) 甲总得分情况有 6 分, 7 分, 8 分, 9 分四种可能,记 ξ 为甲总得分.

$$P(\xi=6)=(\frac{3}{5})^3=\frac{27}{125}, \ P(\xi=7)=C_3^1(\frac{2}{5})(\frac{3}{5})^2=\frac{54}{125},$$

$$P(\xi=8) = C_3^2(\frac{2}{5})^2(\frac{3}{5}) = \frac{36}{125}, \ P(\xi=9) = (\frac{2}{5})^3 = \frac{8}{125}.$$

ζ	6	7	8	9
$P(x=\xi)$	$\frac{27}{125}$	$\frac{54}{125}$	36 125	$\frac{8}{125}$

甲总得分 ξ 的期望:

$$E(\xi) = 6 \times \frac{27}{125} + 7 \times \frac{54}{125} + 8 \times \frac{36}{125} + 9 \times \frac{8}{125} = \frac{36}{5}.$$
10 \(\frac{1}{2}\)

仪征中学 2019 届高考考前数学保温练 2 备用题

1. 已知实数 a, $b \in (0, 2)$, 且满足 $a^2 - b^2 - 4 = \frac{4}{2^b} - 2^a - 4b$, 则 a + b 的值为______. 2

已知数列 $\{a_n\}$ 的各项均为正数,其前 n 项和为 S_n ,且 $2S_{n+1}-3S_n=2a_1$, $n \in \mathbb{N}^*$. (1) 求证: 数列{a_n}为等比数列;

(2) 若 a_1 与 $a_t(t)$ 为常数, $t \ge 3$, $t \in \mathbb{N}^*$)均为正整数,且存在正整数 q,使得 $a_1 \ge q^{t-1}$, $a_t \leq (q+1)^{t-1}$, 求 a_1 的值.

解: (1) 由 $2S_{n+1}-3S_n=2a_1$ 得 $2S_{n+2}-3S_{n+1}=2a_1$,

两式相减得 $2a_{n+2}=3a_{n+1}$,即 $\frac{a_{n+2}}{a_{n+1}}=\frac{3}{2}$.

又 $2S_2-3S_1=2a_1$,得 $\frac{a_2}{a_1}=\frac{3}{2}$.

综上, $\{a_n\}$ 是公比为 $\frac{3}{2}$ 的等比数列.

(2) 因为 $a_t = a_1 \cdot \left(\frac{3}{2}\right)^{t-1}$,且 a_1 与 a_t 均为正整数,

所以 a_1 是 2^{t-1} 的倍数,不妨设 $a_1 = k \cdot 2^{t-1}$, $k \in \mathbb{N}^*$, 故 $a_t = k \cdot 3^{t-1}$.

由 $a_t \leq (q+1)^{t-1}$ 得 $(q+1)^{t-1} \geq k \cdot 3^{t-1} \geq 3^{t-1}$,于是 $q \geq 2$.

又因为 $a_1 \ge q^{t-1}$, $a_t \le (q+1)^{t-1}$ 得 $\frac{a_t}{a} \le \frac{(q+1)^{t-1}}{a^{t-1}}$,于是 $\left(\frac{3}{2}\right)^{t-1} \le \frac{(q+1)^{t-1}}{a^{t-1}}$,

从而 $\frac{3}{2} \leqslant \frac{q+1}{q}$,即 $q \leqslant 2$. 由上可知: q=2.

所以由 $a_t = a_1 \cdot \left(\frac{3}{2}\right)^{t-1} \leqslant 3^{t-1}$ 知 $a_1 \leqslant 2^{t-1}$,又 $a_1 \geqslant 2^{t-1}$.

所以 $a_1 = 2^{t-1}$.

-----6分

……12 分

……16分

……3分

-----8分

……10分

3. 设 $n \in \mathbb{N}^*$.

(1) 若
$$S_n = \sum_{k=0}^{n} C_{2n}^{2k}$$
, 求 S_{2019} 的值;

(2) 若
$$T_n = \sum_{k=0}^n C_{3n}^{3k}$$
 , 求 T_{2019} 的值.

解: (1) 因为
$$(x-1)^{2n} = C_{2n}^0 x^{2n} (-1)^0 + C_{2n}^1 x^{2n-1} (-1)^1 + C_{2n}^2 x^{2n-2} (-1)^2 + \cdots + C_{2n}^{2n} x^0 (-1)^{2n}$$
,

$$\Leftrightarrow x=1$$
, $\bigcup C_{2n}^0 - C_{2n}^1 + C_{2n}^2 - C_{2n}^3 + \cdots + C_{2n}^{2n} = 0$,

$$\overrightarrow{\text{III}} C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + C_{2n}^3 + \dots + C_{2n}^{2n} = 2^{2n}$$
,

(2) 因为
$$T_n = C_{3n}^0 + C_{3n}^3 + C_{3n}^6 + \cdots + C_{3n}^{3n}$$
,

当1
$$\leq k \leq n$$
, $k \in \mathbb{N}^*$ 时, $C_{3n+3}^{3k} = C_{3n+2}^{3k} + C_{3n+2}^{3k-1} = C_{3n+1}^{3k} + C_{3n+1}^{3k-1} + C_{3n+1}^{3k-1} + C_{3n+1}^{3k-1}$

$$=C_{3n+1}^{3k}+2C_{3n+1}^{3k-1}+C_{3n+1}^{3k-2}=C_{3n}^{3k}+C_{3n}^{3k-1}+2\left(C_{3n}^{3k-1}+C_{3n}^{3k-2}\right)+C_{3n}^{3k-2}+C_{3n}^{3k-3}$$

$$=C_{3n}^{3k}+3\left(C_{3n}^{3k-1}+C_{3n}^{3k-2}\right)+C_{3n}^{3k-3}, \qquad \cdots 6 \, \text{ }$$

故
$$T_{n+1} = C_{3n+3}^0 + C_{3n+3}^3 + C_{3n+3}^6 + \dots + C_{3n+3}^{3n+3}$$

$$= C_{3n+3}^0 + C_{3n+3}^{3n+3} + 3\left(C_{3n}^1 + C_{3n}^2 + C_{3n}^4 + \dots + C_{3n}^{3n-2} + C_{3n}^{3n-1}\right) + T_n - C_{3n}^0 + T_n - C_{3n}^{3n}$$

$$= 2T_n + 3\left(2^{3n} - T_n\right)$$

$$=3\times8^n-T_n,$$

所以
$$T_{n+1} - \frac{1}{3} \times 8^{n+1} = -\left(T_n - \frac{1}{3} \times 8^n\right)$$
,8分

又因为
$$T_1 = 2$$
,所以 $T_n - \frac{1}{3} \times 8^n = -\frac{2}{3} \cdot (-1)^{n-1}$,

故
$$T_n = \frac{1}{3} \times 8^n - \frac{2}{3} \cdot (-1)^{n-1}$$
, 所以 $T_{2019} = \frac{8^{2019} - 2}{3}$10 分