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LIGO-GW150914 (10 points)
In 2015, the gravitational-wave observatory LIGO detected, for the first time, the passing of gravitational
waves (GW) through Earth. This event, namedGW150914, was triggered bywaves produced by two black
holes that were orbiting on quasi-circular orbits. This problem will make you estimate some physical
parameters of the system, from the properties of the detected signal.

Part A: Newtonian (conservative) orbits (3.0 points)

A.1 Consider a system of two stars with masses 𝑀1, 𝑀2, at locations ⃗𝑟1, ⃗𝑟2, res-
pectively, with respect to the center-of-mass of the system, that is,

𝑀1 ⃗𝑟1 + 𝑀2 ⃗𝑟2 = 0 . (1)

The stars are isolated from the rest of the Universe and moving at non-
relativistic velocities. Using Newton's laws, the acceleration vector of mass 𝑀1
can be expressed as

d2 ⃗𝑟1
d𝑡2 = −𝛼 ⃗𝑟1

𝑟𝑛
1

, (2)

where 𝑟1 = | ⃗𝑟1|, 𝑟2 = | ⃗𝑟2|. Find 𝑛 ∈ ℕ and 𝛼 = 𝛼(𝐺, 𝑀1, 𝑀2), where 𝐺 is Newton's
constant [𝐺 ≃ 6.67 × 10−11Nm2 kg−2].

1.0pt

A.2 The total energy of the 2-mass system, in circular orbits, can be expressed as:

𝐸 = 𝐴(𝜇, Ω, 𝐿) − 𝐺𝑀𝜇
𝐿 , (3)

where

𝜇 ≡ 𝑀1𝑀2
𝑀1 + 𝑀2

, 𝑀 ≡ 𝑀1 + 𝑀2 , (4)

are the reduced mass and total mass of the system, Ω is the angular velocity of
each mass and 𝐿 is the total separation 𝐿 = 𝑟1 + 𝑟2. Obtain the explicit form of
the term 𝐴(𝜇, Ω, 𝐿).

1.0pt

A.3 Equation 3 can be simplified to 𝐸 = 𝛽𝐺 𝑀𝜇
𝐿 . Determine the number 𝛽. 1.0pt

Part B: Introducing relativistic dissipation (7.0 points)
The correct theory of gravity, General Relativity, was formulated by Einstein in 1915, and predicts that
gravity travels with the speed of light. The messengers carrying information about the interaction are
called GWs. GWs are emitted whenever masses are accelerated, making the system of masses lose
energy.

Consider a system of two point-like particles, isolated from the rest of the Universe. Einstein proved that
for small enough velocities the emitted GWs: 1) have a frequency which is twice as large as the orbital
frequency; 2) can be characterized by a luminosity, i.e. emitted power𝒫, which is dominated by Einstein's
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quadrupole formula,

𝒫 = 𝐺
5𝑐5

3
∑
𝑖=1

3
∑
𝑗=1

(d3𝑄𝑖𝑗
d𝑡3 ) (d3𝑄𝑖𝑗

d𝑡3 ) . (5)

Here, 𝑐 is the velocity of light 𝑐 ≃ 3 × 108 m/s. For a system of 2 pointlike particles orbiting on the 𝑥 − 𝑦
plane, 𝑄𝑖𝑗 is the following table (𝑖, 𝑗 label the row/column number)

𝑄11 =
2

∑
𝐴=1

𝑀𝐴
3 (2𝑥2

𝐴 − 𝑦2
𝐴) , 𝑄22 =

2
∑
𝐴=1

𝑀𝐴
3 (2𝑦2

𝐴 − 𝑥2
𝐴) , 𝑄33 = −

2
∑
𝐴=1

𝑀𝐴
3 (𝑥2

𝐴 + 𝑦2
𝐴) , (6)

𝑄12 = 𝑄21 =
2

∑
𝐴=1

𝑀𝐴 𝑥𝐴 𝑦𝐴 , (7)

and 𝑄𝑖𝑗 = 0 for all other possibilities. Here, (𝑥𝐴, 𝑦𝐴) is the position of mass A in the center-of-mass frame.

B.1 For the circular orbits described in A.2 the components of 𝑄𝑖𝑗 can be expressed
as a function of time 𝑡 as:

𝑄𝑖𝑖 = 𝜇𝐿2

2 (𝑎𝑖 + 𝑏𝑖 cos 𝑘𝑡) , 𝑄𝑖𝑗
𝑖≠𝑗= 𝜇𝐿2

2 𝑐𝑖𝑗 sin 𝑘𝑡 . (8)

Determine 𝑘 in terms of Ω and the numerical values of the constants 𝑎𝑖, 𝑏𝑖, 𝑐𝑖𝑗.

1.0pt

B.2 Compute the power 𝒫 emitted in gravitational waves for that system, and ob-
tain:

𝒫 = 𝜉 𝐺
𝑐5 𝜇2𝐿4Ω6 . (9)

What is the number 𝜉? [If you could not obtain 𝜉, use 𝜉 = 6.4 in the following.]

1.0pt

B.3 In the absence of GW emission the twomasses will orbit on a fixed circular orbit
indefinitely. However, the emission of GWs causes the system to lose energy
and to slowly evolve towards smaller circular orbits. Obtain that the rate of
change dΩ

d𝑡 of the orbital angular velocity takes the form

(dΩ
d𝑡 )

3
= (3𝜉)3 Ω11

𝑐15 (𝐺𝑀c)5 , (10)

where 𝑀c is called the chirp mass. Obtain 𝑀c as a function of 𝑀 and 𝜇. This
mass determines the increase in frequency during the orbital decay. [The name
"chirp" is inspired by the high pitch sound (increasing frequency) produced by
small birds.]

1.0pt
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B.4 Using the information provided above, relate the orbital angular velocity Ω with
the GW frequency 𝑓GW. Knowing that, for any smooth function 𝐹(𝑡) and 𝑎 ≠ 1,

d𝐹(𝑡)
d𝑡 = 𝜒𝐹(𝑡)𝑎 ⇒ 𝐹(𝑡)1−𝑎 = 𝜒(1 − 𝑎)(𝑡 − 𝑡0) , (11)

where 𝜒 is a constant and 𝑡0 is an integration constant, show that (10) implies
that the GW frequency is

𝑓−8/3
GW = 8𝜋8/3𝜉 (𝐺𝑀𝑐

𝑐3 )
(2/3)+𝑝

(𝑡0 − 𝑡)2−𝑝 (12)

and determine the constant 𝑝.

2.0pt

On September 14, 2015 GW150914 was registered by the LIGO detectors, consisting of two L-shaped
arms, each 4 km long. These arms changed by a relative length according to Fig. 1. The arms of the
detector respond linearly to a passing gravitational wave, and the response pattern mimics the wave.
This wave was created by two black holes on quasi-circular orbits; the loss of energy through gravita-
tional radiation caused the orbit to shrink and the black holes to eventually collide. The collision point
corresponds, roughly, to the peak of the signal after point D, in Fig. 1.

Figure 1. Strain, i.e. relative variation of the size of each arm, at the LIGO detector H1. The
horizontal axis is time, and the points A, B, C, D correspond to 𝑡 = 0.000, 0.009, 0.034, 0.040
seconds, respectively.

B.5 From the figure, estimate 𝑓GW(𝑡) at

𝑡AB = 𝑡B + 𝑡A
2 and 𝑡CD = 𝑡D + 𝑡C

2 . (13)

Assuming that (12) is valid all the way until the collision (which strictly speaking
is not true) and that the two objects have equal mass, estimate the chirp mass,
𝑀𝑐, and total mass of the system, in terms of solar masses 𝑀⊙ ≃ 2 × 1030 kg.

1.0pt

B.6 Estimate the minimal orbital separation between the two objects at 𝑡CD. Hence
estimate a maximum size for each object, 𝑅max. Obtain 𝑅⊙/𝑅max to compare
this size with the radius of our Sun, 𝑅⊙ ≃ 7 × 105 km. Estimate also their orbital
linear velocity at the same instant, 𝑣col, comparing it with the speed of light,
𝑣col/𝑐.

1.0pt
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Conclude that these are extremely fast moving, extremely compact objects indeed!
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GW150914 (10 points)

Part A. Newtonian (conservative) orbits (3.0 points)

A.1 Apply Newton’s law to mass 𝑀1:

𝑀1
d

2 ⃗𝑟1
d𝑡2 = 𝐺 𝑀1𝑀2

| ⃗𝑟2 − ⃗𝑟1|2
⃗𝑟2 − ⃗𝑟1

| ⃗𝑟2 − ⃗𝑟1|
. (1)

Use, from eq. (1) of the question sheet

⃗𝑟2 = −𝑀1
𝑀2

⃗𝑟1 , (2)

in eq. (1) above, to obtain
d2 ⃗𝑟1
d𝑡2 = − 𝐺𝑀3

2
(𝑀1 + 𝑀2)2𝑟2

1

⃗𝑟1
𝑟1

. (3)

A.1

𝑛 = 3, 𝛼 = 𝐺𝑀3
2

(𝑀1 + 𝑀2)2 .
1.0pt

A.2 The total energy of the system is the sum of the two kinetic energies plus the gravitational poten-
tial energy. For circular motions, the linear velocity of each of the masses reads

| ⃗𝑣1| = 𝑟1Ω , | ⃗𝑣2| = 𝑟2Ω , (4)

Thus, the total energy is

𝐸 = 1
2

(𝑀1𝑟2
1 + 𝑀2𝑟2

2)Ω2 − 𝐺𝑀1𝑀2
𝐿

, (5)

Now,
(𝑀1𝑟1 − 𝑀2𝑟2)2 = 0 ⇒ 𝑀1𝑟2

1 + 𝑀2𝑟2
2 = 𝜇𝐿2 . (6)

Thus,

𝐸 = 1
2

𝜇𝐿2Ω2 − 𝐺𝑀𝜇
𝐿

. (7)

A.2

𝐴(𝜇, Ω, 𝐿) = 1
2

𝜇𝐿2Ω2 .
1.0pt

A.3 Energy (3) of the question sheet can be interpreted as describing a system of a mass 𝜇 in a cir-
cular orbit with angular velocity Ω, radius 𝐿, around a mass 𝑀 (at rest). Equating the gravitational
acceleration to the centripetal acceleration:

𝐺 𝑀
𝐿2 = Ω2𝐿 . (8)

This is indeed Kepler’s third law (for circular orbits). Then, from (7),

𝐸 = −1
2

𝐺𝑀𝜇
𝐿

. (9)

A.3

𝛽 = −1
2

.
1.0pt
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Part B - Introducing relativistic dissipation (7.0 points)

B.1 Some simple trigonometry for the 𝑥, 𝑦 motion of the masses (in an appropriate Cartesian system)
yields:

(𝑥1, 𝑦1) = 𝑟1(cos(Ω𝑡), sin(Ω𝑡)) , (𝑥2, 𝑦2) = −𝑟2(cos(Ω𝑡), sin(Ω𝑡)) . (10)

Then,

𝑄𝑖𝑗 = 𝑀1𝑟2
1 + 𝑀2𝑟2

2
2

⎛⎜⎜⎜
⎝

4
3 cos

2(Ω𝑡) − 2
3 sin

2(Ω𝑡) 2 sin(Ω𝑡) cos(Ω𝑡) 0
2 sin(Ω𝑡) cos(Ω𝑡) 4

3 sin
2(Ω𝑡) − 2

3 cos
2(Ω𝑡) 0

0 0 − 2
3

⎞⎟⎟⎟
⎠

, (11)

or, using some simple trigonometry and (6),

𝑄𝑖𝑗 = 𝜇𝐿2

2
⎛⎜⎜⎜
⎝

1
3 + cos 2Ω𝑡 sin 2Ω𝑡 0
sin 2Ω𝑡 1

3 − cos 2Ω𝑡 0
0 0 − 2

3

⎞⎟⎟⎟
⎠

. (12)

B.1

𝑘 = 2Ω , 𝑎1 = 𝑎2 = 1
3

, 𝑎3 = −2
3

, 𝑏1 = 1, 𝑏2 = −1, 𝑏3 = 0 , 𝑐12 = 𝑐21 = 1, 𝑐𝑖𝑗
otherwise= 0 .

1.0pt

B.2 First take the derivatives:

d3𝑄𝑖𝑗

d𝑡3 = 4Ω3𝜇𝐿2
⎛⎜⎜⎜
⎝

sin 2Ω𝑡 − cos 2Ω𝑡 0
− cos 2Ω𝑡 − sin 2Ω𝑡 0

0 0 0

⎞⎟⎟⎟
⎠

. (13)

Then perform the sum:

d𝐸
d𝑡

= 𝐺
5𝑐5 (4Ω3𝜇𝐿2)2[2 sin2(2Ω𝑡) + 2 cos2(2Ω𝑡)] = 32

5
𝐺
𝑐5 𝜇2𝐿4Ω6 . (14)

B.2

𝜉 = 32
5

.
1.0pt

B.3 Now we assume a sequency of Keplerian orbits, with decreasing energy, which is being taken
from the system by the GWs.

First, from (9), differentiating with respect to time,

d𝐸
d𝑡

= 𝐺𝑀𝜇
2𝐿2

d𝐿
d𝑡

, (15)

Since this loss of energy is due to GWs, we equate it with (minus) the luminosity of GWs, given by (14)

𝐺𝑀𝜇
2𝐿2

d𝐿
d𝑡

= −32
5

𝐺
𝑐5 𝜇2𝐿4Ω6 . (16)

We can eliminate the 𝐿 and d𝐿/d𝑡 dependence in this equation in terms of Ω and dΩ/d𝑡, by using
Kepler’s third law (8), which relates:

𝐿3 = 𝐺 𝑀
Ω2 , d𝐿

d𝑡
= −2

3
𝐿
Ω
dΩ
d𝑡

. (17)
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Substituting in (16), we obtain:

(dΩ
d𝑡

)
3

= (96
5

)
3 Ω11

𝑐15 𝐺5𝜇3𝑀2 ≡ (96
5

)
3 Ω11

𝑐15 (𝐺𝑀c)
5 . (18)

B.3
𝑀c = (𝜇3𝑀2)1/5 .

1.0pt

B.4 Angular and cycle frequencies are related as Ω = 2𝜋𝑓. From the information provided above: GWs
have a frequency which is twice as large as the orbital frequency, we have

Ω
2𝜋

= 𝑓GW
2

. (19)

Formula (10) of the question sheet has the form

dΩ
d𝑡

= 𝜒Ω11/3 , 𝜒 ≡ 96
5

(𝐺𝑀c)5/3

𝑐5 . (20)

Thus, from (11) of the question sheet

Ω(𝑡)−8/3 = 8
3

𝜒(𝑡0 − 𝑡) , (21)

or, using (20) and the definition of 𝜒 gives

𝑓−8/3
GW (𝑡) = (8𝜋)8/3

5
(𝐺𝑀c

𝑐3 )
5/3

(𝑡0 − 𝑡) . (22)

B.4
𝑝 = 1 .

2.0pt

B.5 From the figure, we consider the two Δ𝑡’s as half periods. Thus, the (cycle) GW frequency is 𝑓GW =
1/(2Δ𝑡). Then, the four given points allow us to compute the frequency at the mean time of the two
intervals as

𝑡AB 𝑡CD
𝑡 (s) 0.0045 0.037

𝑓GW (Hz) (2 × 0.009)−1 (2 × 0.006)−1

Now, using (22) we have two pairs of (𝑓GW,𝑡) values for two unknowns (𝑡0,𝑀c). Expressing (22) for both
𝑡AB and 𝑡CD and dividing the two equations we obtain:

𝑡0 =
𝐴𝑡CD − 𝑡AB

𝐴 − 1
, 𝐴 ≡ (

𝑓GW(𝑡AB)
𝑓GW(𝑡CD)

)
−8/3

. (23)

Replacing by the numerical values, 𝐴 ≃ 2.95 and 𝑡0 ≃ 0.054 s. Now we can use (22) for either of the
two values 𝑡AB or 𝑡CD and determine 𝑀c. One obtains for the chirp mass

𝑀c ≃ 6 × 1031 kg ≃ 30 × 𝑀⊙ . (24)

Thus, the total mass 𝑀 is
𝑀 = 43/5𝑀c ≃ 69 × 𝑀⊙ . (25)

This result is actually remarkably close to the best estimates using the full theory of General Relativity!
[Even though the actual objects do not have precisely equal masses and the theory we have just used
is not valid very close to the collision.]
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B.5
𝑀c ≃ 30 × 𝑀⊙ , 𝑀 ≃ 69 × 𝑀⊙ .

1.0pt

B.6 From (8), Kepler’s law states that 𝐿 = (𝐺𝑀/Ω2)1/3. The second pair of points highlighted in the
plot correspond to the cycle prior to merger. Thus, we use (19) to obtain the orbital angular velocity
at 𝑡CD:

Ω𝑡CD ∼ 2.6 × 102 rad/s . (26)

Then, using the total mass (25) we find

𝐿 ∼ 5 × 102 km . (27)

Thus, these objects have a maximum radius of 𝑅max ∼ 250 km. Hence they have over 30 times more
mass and,

𝑅⊙
𝑅max

∼ 3 × 103 (28)

they are 3000 times smaller than the Sun and!

Their linear velocity is

𝑣col = 𝐿
2

Ω ≃ 7 × 104 km/s . (29)

They are moving at over 20% of the velocity of light!

B.6

𝐿collision ∼ 5 × 102 km ,
𝑅⊙

𝑅max

∼ 3 × 103 , 𝑣col
𝑐

∼ 0.2 .
1.0pt
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Where is the neutrino? (10 points)
When two protons collide with a very high energy at the Large Hadron Collider (LHC), several particles
may be produced as a result of that collision, such as electrons, muons, neutrinos, quarks, and their
respective anti-particles. Most of these particles can be detected by the particle detector surrounding
the collision point. For example, quarks undergo a process called hadronisation in which they become a
shower of subatomic particles, called "jet''. In addition, the high magnetic field present in the detectors
allows even very energetic charged particles to curve enough for their momentum to be determined.
The ATLAS detector uses a superconducting solenoid system that produces a constant and uniform 2.00
Tesla magnetic field in the inner part of the detector, surrounding the collision point. Charged particles
with momenta below a certain value will be curved so strongly that they will loop repeatedly in the field
and most likely not be measured. Due to its nature, the neutrino is not detected at all, as it escapes
through the detector without interacting.

Data: Electron rest mass, 𝑚 = 9.11 × 10−31 kg; Elementary charge, 𝑒 = 1.60 × 10−19 C;

Speed of light, 𝑐 = 3.00 × 108 m s−1; Vacuum permittivity, 𝜖0 = 8.85 × 10−12 F m−1

Part A. ATLAS Detector physics (4.0 points)

A.1 Derive an expression for the cyclotron radius, 𝑟, of the circular trajectory of an
electron acted upon by a magnetic force perpendicular to its velocity, and ex-
press that radius as a function of its kinetic energy, 𝐾; chargemodulus, 𝑒; mass,
𝑚; and magnetic field, 𝐵. Assume that the electron is a non-relativistic classical
particle.

0.5pt

Electrons produced inside the ATLAS detector must be treated relativistically. However, the formula for
the cyclotron radius also holds for relativistic motion when the relativistic momentum is considered.

A.2 Calculate the minimum value of the momentum of an electron that allows it to
escape the inner part of the detector in the radial direction. The inner part of
the detector has a cylindrical shapewith a radius of 1.1meters, and the electron
is produced in the collision point exactly in the center of the cylinder. Express
your answer in MeV/𝑐.

0.5pt

When accelerated perpendicularly to the velocity, relativistic particles of charge 𝑒 and rest mass 𝑚 emitt
electromagnetic radiation, called synchrotron radiation. The emitted power is given by

𝑃 = 𝑒2𝑎2𝛾4

6𝜋𝜖0𝑐3

where 𝑎 is the acceleration and 𝛾 = [1 − (𝑣/𝑐)2]−1/2.

A.3 A particle is called ultrarelativistic when its speed is very close to the speed of
light. For an ultrarelativistic particle the emitted power can be expressed as:

𝑃 = 𝜉 𝑒4

𝜖0𝑚𝑘𝑐𝑛 𝐸2𝐵2 ,

where 𝜉 is a real number, 𝑛, 𝑘 are integers, 𝐸 is the energy of the charged par-
ticle and 𝐵 is the magnetic field. Find 𝜉, 𝑛 and 𝑘.

1.0pt
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