江苏省仪征中学 2018-2019 学年第二学期期末复习讲义(4)
一、填空题:
1、设 i 是虚数单位,复数 $\frac{1+ai}{2+i}$ 为纯虚数,则实数 a 的值为2
2. " $\log_3 M > \log_3 N$ "是" $M > N$ "成立的条件. 必要不充分

(从"充要"、"充分不必要"、"必要不充分"中选择一个正确的填写) 3.设
$$\alpha$$
 为锐角,若 $\sin(\alpha - \frac{\pi}{6}) = \frac{1}{3}$,则 $\cos \alpha$ 的值为_____.

【答案】
$$\frac{2\sqrt{6}-1}{6}$$
.

4. 将函数 $y = \sqrt{3} \sin x + \cos x$ 的图像向左平移 m (m > 0) 个单位长度后,所得的图像关于 y 轴对称,则 m 的最小值是 .

【答案】
$$\frac{\pi}{6}$$

$$y=\sqrt{3}\cos x+\sin x=2\sin(x+\frac{\pi}{3})$$

【解析】因为 ,所以向左平移 $m(m>0)$ 个单位长度后变换为

$$y=2\sin(x+\frac{\pi}{3}+m)$$
 ,由题意得 $m+\frac{\pi}{3}=\frac{\pi}{2}+k\pi(k\in Z)$ 且 $m>0$,即 $m=\frac{\pi}{6}+k\pi(k\in Z)$,注意到 $m>0$,

$$m = \frac{\pi}{6}$$
 所以当 $k = 0$ 时, m 取最小值 $\frac{\pi}{6}$, 因此 m 的最小值是 $\frac{\pi}{6}$.

6. 观察下列等式:

$$1=1$$

$$2+3+4=9$$

$$3+4+5+6+7=25$$

$$4+5+6+7+8+9+10=49$$

照此规律归纳第 n ($n \in \mathbb{N}^*$) 个等式,应为_____. $n + (n+1) + (n+2) + \dots + (3n-2) = (2n-1)^2$

- 9. 定义在 R 上的奇函数 f(x)满足: 当 x > 0 时, $f(x) = 2^x + \log_2 x$,则方程 f(x) = 0 的实根的个数为 . 3
- 8.已知圆 C_1 : $x^2+y^2-2mx+4y+m^2-5=0$ 和圆 C_2 : $x^2+y^2+2x-2my+m^2-3=0$,若两圆相交,实数 m 的取值范围为______,若两圆相切,实数 m 的取值为_____

答案: -5<m<-2 或-1<m<2; -5、-2、-1、2.

9. 已知 $f(x) = \ln(x^2 - ax + 2a - 2)(a > 0)$,若 f(x) 在 $[1, +\infty)$ 上是增函数,则 a 的取值范围是______. (1,2]

10 已知函数 $f(x) = \sqrt{3}\cos^2\omega x + \sin\omega x \cos\omega x$ ($\omega > 0$)的周期为 π . 当 $x \in [0, \frac{\pi}{2}]$ 时,求函数 f(x)的值域

答案: $[0, \frac{\sqrt{3}}{2}+1]$

11.设实数 $a \ge 1$,使得不等式 $x|x-a|+\frac{3}{2} \ge a$,对任意的实数 $x \in [1,2]$ 恒成立,则满足条件的实数 a 的范围是______. $[1,\frac{3}{2}] \cup [\frac{5}{2},+\infty)$

12.定义在R上的函数 f(x)满足: f(x)+f'(x)>1, f(0)=4,则不等式 $e^x f(x)>e^x+3$ 的解集是_______. $(0,+\infty)$

13. 已知函数 $f(x) = 2\sqrt{3}\sin x - 2\cos x$. (1)若 $x \in [0, \pi]$, 求 f(x)的最大值和最小值;

(2)若
$$f(x) = 0$$
,求 $\frac{2\cos^2\frac{x}{2} - \sin x - 1}{\sqrt{2}\sin(x + \frac{\pi}{4})}$ 的值.

解析: (1) $f(x) = 2\sqrt{3}\sin x - 2\cos x = 4\sin(x - \frac{\pi}{6})$

$$x \in [0,\pi], \text{ M} x - \frac{\pi}{6} \in [-\frac{\pi}{6}, \frac{5\pi}{6}], \therefore f(x)_{\text{max}} = 4, f(x)_{\text{min}} = -2$$

(2)
$$f(x) = 0$$
, $\sin(x - \frac{\pi}{6}) = 0$, $x - \frac{\pi}{6} = k\pi$, $x = \frac{\pi}{6} + k\pi$, $\tan x = \frac{\sqrt{3}}{3}$

$$\times \frac{2\cos^2\frac{x}{2} - \sin x - 1}{\sqrt{2}\sin\left(x + \frac{\pi}{4}\right)} = \frac{\cos x - \sin x}{\sin x + \cos x} = \frac{1 - \tan x}{\tan x + 1} = 2 - \sqrt{3}$$

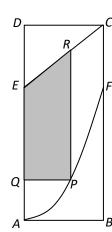
14.某地政府为科技兴市,欲在如图所示的矩形 ABCD 的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形 QPRE (线段 EQ 和 RP 为两个底边),已知 AB = 2km, BC = 6km, AE = BF = 4km, 其中 <math>AF 是以 A 为顶点、 AD 为对称轴的抛物线段. 试求该高科技工业园区的最大面积.

解:以A为原点,AB所在直线为x轴建立直角坐标系如图,则A(0,0),F(2,4),由题意可设抛物线段所在抛物线的方程为

 $y = ax^2 (a > 0)$,由 $4 = a \times 2^2$ 得,a = 1,∴AF 所在抛物线的方程为 $y = x^2$,又 E(0,4),C(2,6),∴EC 所在直线的方程为 y = x + 4,设 $P(x, x^2)(0 < x < 2)$,则 PQ = x, $QE = 4 - x^2$, $PR = 4 + x - x^2$,

∴工业园区的面积
$$S = \frac{1}{2}(4-x^2+4+x-x^2)\cdot x = -x^3 + \frac{1}{2}x^2 + 4x \ (0 < x < 2)$$
,

∴
$$S' = -3x^2 + x + 4$$
, $\diamondsuit S' = 0$ $@ x = \frac{4}{3}$ $@ x = -1$ (舍去负值),



当x变化时,S'和S的变化情况如下表:

x	$(0,\frac{4}{3})$	$\frac{4}{3}$	$(\frac{4}{3},2)$
S'	+	0	-
S	1	极大值 104 27	\

由表格可知,当 $x = \frac{4}{3}$ 时,S取得最大值 $\frac{104}{27}$. 答:该高科技工业园区的最大面积 $\frac{104}{27}$.

15.已知函数 $f(x) = 2x \ln x - 1$. (1) 求函数 f(x) 的最小值及曲线 f(x) 在点 (1, f(1)) 处

的切线_方程;(2)若不等式 $f(x) \le 3x^2 + 2ax$ 恒成立,求实数a的取值范围.

(1) 函数
$$f(x) = 2x \ln x - 1$$
 的定义域为 $(0,+\infty)$, $f'(x) = 2(\ln x + x \cdot \frac{1}{x}) = 2(\ln x + 1)$,

令
$$f'(x) = 0$$
, 得 $x = \frac{1}{e}$; 令 $f'(x) > 0$, 得 $x > \frac{1}{e}$; 令 $f'(x) < 0$, 得 $0 < x < \frac{1}{e}$;

所以函数 f(x) 在 $(0,\frac{1}{e})$ 上单调递减,在 $(\frac{1}{e},+\infty)$ 上单调递增,

所以函数
$$f(x)$$
 的最小值为 $f(\frac{1}{e}) = -\frac{2}{e} - 1$. (4分)

因为f'(1)=2,即切线的斜率为 2,

所以所求的切线方程为 y-f(1)=2(x-1) ,即 y-(-1)=2(x-1) ,化简得 2x-y-3=0 . (6分)

(2) 不等式 $f(x) \le 3x^2 + 2ax$ 恒成立等价于 $2x \ln x - 1 \le 3x^2 + 2ax$ 在 $(0, +\infty)$ 上恒成立,可得

$$a \ge \ln x - \frac{3}{2}x - \frac{1}{2x}$$
在 $(0,+\infty)$ 上恒成立, $(8分)$
设 $h(x) = \ln x - \frac{3}{2}x - \frac{1}{2x}$,则 $h'(x) = \frac{1}{x} - \frac{3}{2} + \frac{1}{2x^2} = -\frac{(x-1)(3x+1)}{2x^2}$,

令
$$h'(x) = 0$$
, 得 $x = 1$ 或 $x = -\frac{1}{3}$ (舍去).

当0 < x < 1时,h'(x) > 0;当x > 1时,h'(x) < 0,(10分)

当x变化时,h'(x),h(x)的变化情况如下表:

x	(0,1)	1	(1,+∞)
h'(x)	+	0	_
h(x)	单调递增	-2	单调递减

所以当x=1时,h(x)取得最大值, $h(x)_{max}=-2$,所以 $a\geq -2$,

所以实数 a 的取值范围是 $[-2,+\infty)$.

16. 已知圆 $O: x^2 + y^2 = r^2 (r > 0)$, 与y轴交于M、N两点且M在N的上方. 若直线

 $y = 2x + \sqrt{5}$ 与圆 O 相切.

- (1) 求实数r的值;
- (2) 若动点 P 满足 $PM = \sqrt{3}PN$, 求 ΔPMN 面积的最大值.
- (3)设圆 O 上相异两点 A、B 满足直线 MA、MB 的斜率之积为 $\frac{\sqrt{3}}{3}$. 试探究直线 AB 是否经过定点,若经过,请求出定点的坐标;若不经过,请说明理由.
- **16.** 解: (1) **:**直线 $y = 2x + \sqrt{5}$ 与圆 *O* 相切

(2) 设点 P(x,y), 点 M(0,1), N(0,-1), MN = 2;

- ∴点 P 在圆心为(0,-2), 半径为 $\sqrt{3}$ 的圆上
- ∴点P到v轴的距离最大值为 $\sqrt{3}$

- (3) 设 $A(x_1, y_1), B(x_2, y_2)$,则 $x_1^2 + y_1^2 = 1$, $x_2^2 + y_2^2 = 1$
- ①若直线 AB 的斜率不存在,则 $x_1 = x_2$, $y_1 = -y_2$,则

②设直线
$$AB: y = kx + m$$
 , 则
$$\begin{cases} y = kx + m \\ x^2 + y^2 = 1 \end{cases}$$
 $\therefore (k^2 + 1)x^2 + 2kmx + m^2 - 1 = 0$.

$$\therefore x_1 + x_2 = -\frac{2km}{k^2 + 1}, \quad x_1 \cdot x_2 = \frac{m^2 - 1}{k^2 + 1}, \quad \text{if } y_1 + y_2 = \frac{2m}{k^2 + 1}, \quad y_1 \cdot y_2 = \frac{m^2 - k^2}{k^2 + 1} \qquad13 \text{ for } x_1 + x_2 = -\frac{2km}{k^2 + 1}, \quad x_1 \cdot x_2 = \frac{m^2 - k^2}{k^2 + 1}$$

化简得:
$$\frac{m-1}{m+1} = \frac{1}{\sqrt{3}}$$
 : $m = 2 + \sqrt{3}$: 直线 AB 过定点 $(0, 2 + \sqrt{3})$