江苏省仪征中学高三数学周三练习 2

在外有仅位下于同一数于周二级为2					
班	趿 学号	姓名			
<u> </u>	单选				
1.	" $\sin \alpha = \cos \alpha$ "是" $\cos 2\alpha = 0$ "的	j		()
	A. 充分但不必要条件	B. 必要但不充分条件			
	C. 充要条件	D. 既不充分也不必要条	:件		
2.	已知 $a = \log_3 5$, $b = \ln \frac{1}{2}$, $c = 1$	1.5 ^{-1.1} ,则 <i>a,b,c</i> 的大小关系正码	角的是	()
Α.	b < c < a B. $b < a < c$	C. $a < c < b$ D. $a < b$	< c		
3、	己知半径为1的圆经过点(3,4	4),则其圆心到原点的距离的最	小值为	().
Α.	4 B. 5	C. 6	D.	7	
4. 我国的 5G 通信技术领先世界,5G 技术的数学原理之一是著名的香农(Shannon)公式,香农提出并严格证明了"在被高斯白噪声干扰的信道中,计算最大信息传送速率 C 的公式 $C=W\cdot\log_2(1+\frac{S}{N})$ ",其中 W 是信道带宽(赫兹), S 是信道内所传信号的平					
均二	力率(瓦), N 是信道内部的高其	斯噪声功率(瓦),其中 $\frac{S}{N}$ 叫做信	噪比. 柞	根据.	此公
式,	在不改变 W 的前提下,将信噪	ξ 比从 99 提升至 λ ,使得 C 大约增	加了 60	%,	则λ
的作	直大约为(参考数据:1002≈1.58)			()
	A. 1559	B. 3943			

二. 多选

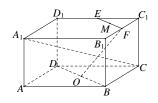
C. 1579

5. 在长方体 $ABCD-A_1B_1C_1D_1$ 中,E,F 分别为 C_1D_1 , B_1C_1 的中点,O,M 分别为 BD,EF

D. 2512

的中点,则下列说法正确的是 ()

- A. 四点 B、D、E、F 在同一平面内
- B. 三条直线 BF, DE, CC_1 有公共点
- C. 直线 A_iC 与直线 OF 不是异面直线
- D. 直线 A_iC 上存在点 N 使 M,N,O 三点共线



- 6、已知曲线 $C: mx^2 + ny^2 = 1$. ()
- A. 若 m>n>0,则 C 是椭圆,其焦点在 y 轴上
- B. 若 m=n>0,则 C 是圆,其半径为 \sqrt{n}
- C. 若 mn<0,则 C 是双曲线,其渐近线方程为 $y=\pm\sqrt{-\frac{m}{n}}x$
- D. 若m=0, n>0, 则C是两条直线

三. 填空

- 7. 在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的终边关于 y 轴对称. 若 $\tan \alpha = \frac{1}{3}$,则 $\tan(\alpha \beta) = \underline{\hspace{1cm}}$.
- 8. 已知三棱锥 A-BCD 中, $\triangle BAC$ 和 $\triangle BDC$ 是边长为 2 的等边三角形,且平面 ABD \bot 平面 BCD ,该三棱锥外接球的表面积为______

四.解答

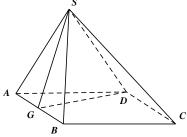
- 9. 己知函数 $f(x) = \sqrt{3} \sin x 2 \cos^2 \frac{x}{2} + 1$.
 - (I) 若 $f(\alpha) = 2\sqrt{3}f(\alpha + \frac{\pi}{6})$, 求 $\tan \alpha$ 的值;
- (II)将函数 f(x) 图象上所有点的纵坐标保持不变,横坐标变为原来的 $\frac{1}{2}$ 倍得函数 g(x) 的图象,若关于 x 的方程 g(x)-m=0 在 $[0,\frac{\pi}{2}]$ 上有解,求 m 的取值范围.

10.如图,在四棱锥 S—ABCD 中,底面 ABCD 是菱形,G 是线段 AB 上一点(不含 A,B),在平面 SGD 内过点 G 作 GP //平面 SBC 交 SD 于点 P .

(I) 写出作点 P、GP 的步骤(不要求证明);

(II) 若
$$\angle BAD = \frac{\pi}{3}$$
, $AB = SA = SB = SD = 2$, $P \neq SD$ 的中

点,求平面 SBC 与平面 SGD 所成锐二面角的大小.



11、已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的右焦点为 $F_2(3, 0)$, 离心率为 e.

$$(1)$$
若 $e = \frac{\sqrt{3}}{2}$,求椭圆的方程.

(2) 设直线 y=kx 与椭圆相交于 A, B 两点, M, N 分别为线段 AF₂, BF₂ 的中点. 若坐标原点 0 在以 MN 为直径的圆上, 且 $\frac{\sqrt{2}}{2}$ < e ≤ $\frac{\sqrt{3}}{2}$ ≤, 求 k 的取值范围.

 $7.\frac{3}{4}$ 5.ABD 6.ACD 4.C 1.A 2.A 3.A

9. 解: (I) 因为 $f(x) = \sqrt{3} \sin x - 2 \cos^2 \frac{x}{2} + 1$

$$= \sqrt{3}\sin x - \cos x \qquad 1 \ \%$$
$$= 2\sin(x - \frac{\pi}{6}), \qquad 2 \ \%$$

(II) f(x) 图象上所有点横坐标变为原来的 $\frac{1}{2}$ 倍得到函数 g(x) 的图象,

- 10.解: (I) 第一步: 在平面 ABCD 内作 GH | BC 交 CD 于点 H; ·································2 分 第二步: 在平面 SCD 内作 HP // SC 交 SD 于 P; ·······4 分
- 第三步: 连接 GP, 点 P、GP 即为所求.5 分

连AC,GD 交于O, 连SO, 设S 在底面ABCD 的射影为M,

因为SA = SB = SD, 所以MA = MB = MD, 即M为 ΔABD 的外心,

所以 *M* 与 *O* 重合,8 分

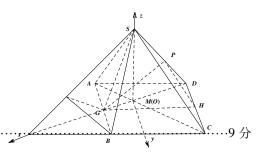
因
$$OD = \frac{2\sqrt{3}}{3}$$
, $SD = 2$, 所以 $SO = \frac{2\sqrt{6}}{3}$,

$$OC = \frac{2}{3}AC = \frac{4\sqrt{3}}{3} ,$$

过O作OE//GB交BC于E,以 \overrightarrow{OG} , \overrightarrow{OE} , \overrightarrow{OS} 分别为x,y,

z 轴建立空间直角坐标系,则

$$S(0,0,\frac{2\sqrt{6}}{3}), B(\frac{\sqrt{3}}{3},1,0), C(-\frac{2\sqrt{3}}{3},2,0),$$



所以
$$\overrightarrow{SB} = (\frac{\sqrt{3}}{3}, 1, -\frac{2\sqrt{6}}{3}), \overrightarrow{BC} = (-\sqrt{3}, 1, 0)$$
, 设平面 \overrightarrow{SBC} 的法向量为 $\overrightarrow{n} = (x, y, z)$,

$$| \vec{y} | \begin{cases} \vec{n} \cdot \vec{SB} = \frac{\sqrt{3}}{3} x + y - \frac{2\sqrt{6}}{3} z = 0 \\ \vec{n} \cdot \vec{BC} = -\sqrt{3} x + y = 0 \end{cases} ,$$

取
$$z = \sqrt{2}$$
 , 则 $x = 1$, $y = \sqrt{3}$,

所以
$$\vec{n} = (1, \sqrt{3}, \sqrt{2})$$
.10 分

又GB上平面SGD,

故 \overrightarrow{GB} = (0,1,0) 为平面 SGD 的法向量, ……

设平面 SBC 与平面 SGD 所成锐二面角的大小为 θ ,

$$\operatorname{II} \cos \theta = \frac{|\overrightarrow{n} \cdot \overrightarrow{GB}|}{|\overrightarrow{n}||\overrightarrow{GB}|} = \frac{\sqrt{3}}{\sqrt{6}} = \frac{\sqrt{2}}{2},$$

因为
$$\theta \in (0, \frac{\pi}{2})$$
 ,所以 $\theta = \frac{\pi}{4}$. 12 分

故平面 SBC 与平面 SGD 所成锐二面角的大小为 $\frac{\pi}{4}$.

(2)由
$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, & \text{得}(b^2 + a^2k^2)x^2 - a^2b^2 = 0, \text{设 A}(x_1, y_1), B(x_2, y_2), \text{所以 } x_1 + x_2 = 0, x_1x_2 = \frac{-a^2b^2}{b^2 + a^2k^2}, \\ y = kx \end{cases}$$

由已知可得, $OM \perp ON$,易证四边形 OMF_2N 为平行四边形,所以 $AF_2 \perp BF_2$,

因为
$$\overrightarrow{F_2A} = (x_1 - 3, y_1), \overrightarrow{F_2B} = (x_2 - 3, y_2),$$

所以
$$\overrightarrow{F_2A} \cdot \overrightarrow{F_2B} = (x_1 - 3)(x_2 - 3) + y_1y_2 = (1 + k^2)x_1x_2 + 9 = 0$$
,

即
$$\frac{-a^2 \cdot (a^2-9) \cdot (1+k^2)}{a^2 k^2 + (a^2-9)}$$
+9=0,整理为 $k^2 = \frac{a^4-18a^2+81}{a^4-18a^2} = -1 - \frac{81}{a^4-18a^2}$

因为
$$\frac{\sqrt{2}}{2}$$
< $e \le \frac{\sqrt{3}}{2}$,所以 $2\sqrt{3} \le a < 3\sqrt{2}$,12 $\le a^2 < 18$.

所以
$$k^2 \ge \frac{1}{8}$$
,即 k 的取值范围是 $(-\infty, -\frac{\sqrt{2}}{4}] \cup [\frac{\sqrt{2}}{4}, +\infty)$.