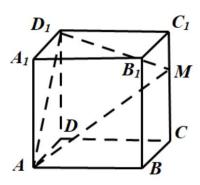
江苏省仪征中学 2020-2021 学年度第一学期

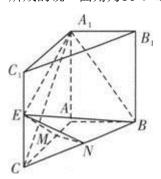
高二数学热身综合练(2)

班级:_		学-	学号:	
一、选择题(本大	题共4小题,共20分)		
1. $m = \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	a > b > 0)的左右焦点	$(分别为F_1, F_2, \land P_1)$	在椭圆上, $PF_2 \perp x$ 轴,且	
ΔPF_1F_2 是等腰直角]三角形,则该椭圆的	离心率为()		
A. $\frac{\sqrt{2}}{2}$	B. $\frac{\sqrt{2}-1}{2}$	C. $2 - \sqrt{2}$	D. $\sqrt{2} - 1$	
2. 已知函数 $f(x) =$	$\frac{e^x}{e^x+1}$, $\{a_n\}$ 为等比数列	J, $\mathbb{H}a_n > 0$, a_{1009}	$a_{1011} = 1$,则	
$f(\ln a_1) + f(\ln a_2) +$	$\cdots + f(\ln a_{2019}) = ($)		
A. 2018	B. $\frac{2019}{2}$	C. 1009	D. 1	
3. 下列说法正确的。	是()			
A. 命题 "∀x €	$\in \mathbf{R}, \ x^2 > -1$ "的否定	定是"∃ x ∈ R , x^2 <	-1"	
B. 命题 "∃ <i>x</i> €	$(-3, +\infty), \ x^2 \le 9$	的否定是 " $\forall x \in (-$	$3, +\infty$), $x^2 > 9$ "	
C. " $x^2 > y^2$ "	是 " $x > y$ " 的必要	下充分条件		
D. " $m < 0$ "	是"关于 x 的方程 x^2 -	-2x+m=0有一正	一负根"的充要条件	
4. 己知抛物线 C: y	$y^2 = 2px (p > 0)$ 的焦	[点 F 到准线的距离	b2,过点 F 的直线与抛物线	
交于 P , Q 两点, M	I为线段 PQ 的中点,	o 为坐标原点,则()	
A. C 的准线方程为 $y = 1$ $B. 线段 PQ$ 长度的最小值为 4		度的最小值为 4		
C.M 的坐标可	能为(3,2)	D. $\overrightarrow{OP} \cdot \overrightarrow{OQ} =$	-3	
	题共 4 小题, 共 20 分			
			PE·BC的值为	
6. 已知F(2,0)为椭	圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b)$	b > 0)的右焦点,直线	线 $l: y = -\frac{1}{3}x + m$ 与椭圆 C 相	
交于 A , B 两点, A , B	的中点为 P,且直线。	OP 的斜率 $k=1$,则	椭圆 C 的方程为	
7. 已知 F 为抛物线 $y^2=x$ 的焦点,点 A , B 在该抛物线上且位于 x 轴的两侧, $\vec{OA}\cdot\vec{OB}=2$ (其				
中 O 为坐标原占)。则 \wedge ARO 与 \wedge AFO 面积之和的最小值是				

8. 如图所示,在长方体 $ABCD-A_1B_1C_1D_1$ 中,AB=1, $BC=\sqrt{3}$,点 M 在棱 CC_1 上,且 $MD_1\perp MA$,则 ΔMAD_1 的面积的最小值为_____,此时棱 CC_1 与平面 MAD_1 所成角的正弦值为______.



- 三、解答题(本大题共3小题,共36分)
- 9. 如图,直三棱柱 $ABC A_1B_1C_1$ 的底面边长和侧棱长均为 2,E 为棱 CC_1 的中点.
- (1)求异面直线 A_1C 与 BE 所成角的余弦值;
- (2)已知 M,N 分别在棱 AC,BC 上,且MN//AB, $CM = \lambda AC$,若平面 A_1BE 与平面 MNE 所成的锐二面角为 60° ,求 A 的值.



10. 已知等比数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_1=1$, 公比q=3.

(1)求证:
$$S_n = \frac{a_{n+1}-1}{2}$$
;

(2)求数列 $\{2na_n\}$ 的前 n 项和 T_n .

- 11. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的一个顶点为 $M(0, \sqrt{3})$,离心率 $e = \frac{1}{2}$.
- (1)求椭圆的方程;
- (2)设直线 l 过右焦点 F_2 与椭圆交于A,B两点,求 ΔAOB 面积的最大值.

答案和解析

1. *D*

2. *B*

3. *BD*

4. *BCD*

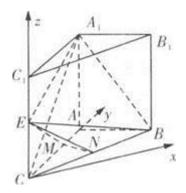
5. −1

6.
$$\frac{x^2}{6} + \frac{y^2}{2} = 1$$

7. 3

8.
$$\frac{3}{2}$$
; $\frac{\sqrt{3}}{3}$

9. 解: (1)在直三棱柱 $ABC - A_1B_1C_1$ 中, CC_1 上平面 ABC,又AC \subset 平面 ABC,所以 $AC \perp CC_1$,以 C 为坐标原点,CA, CC_1 所在直线分别为 y 轴,z 轴,过点 C 且垂直于平面 ACC_1A_1 的直线为 x 轴建立如图所示的空间直角坐标系.



则 $\mathcal{C}(0,0, 0)$, A(0,2, 0), $B(\sqrt{3},1, 0)$, $A_1(0,2, 2)$, E(0,0, 1),

所以
$$\overrightarrow{A_1C} = (0, -2, -2), \ \overrightarrow{BE} = (-\sqrt{3}, -1, 1),$$

设异面直线 A_1C 与 BE 所成的角为 θ ,则 $\cos\theta = \frac{|\overline{A_1C} \cdot \overline{BE}|}{|\overline{A_1C}||\overline{BE}|} = 0$,

所以异面直线 A_1C 与 BE 所成角的余弦值为 0.

(2)由(1)及题意知, $M(0,2\lambda,0)$, $\overrightarrow{A_1E}=(0,-2,-1)$, $\overrightarrow{A_1B}=(\sqrt{3},-1,-2)$, $\overrightarrow{ME}=(0,-2\lambda,1)$, $\overrightarrow{MN}=\lambda \overrightarrow{AB}=(\sqrt{3}\lambda,-\lambda,0)$,

设平面
$$A_1BE$$
的法向量为 $\overrightarrow{n_1} = (x_1, y_1, z_1)$,则 $\left\{ \begin{array}{c} \overrightarrow{A_1E} \cdot \overrightarrow{n_1} = 0, \\ \overrightarrow{A_1B} \cdot \overrightarrow{n_1} = 0, \end{array} \right.$

$$\exists \mathbb{I} \begin{cases} 2y_1 + z_1 = 0, \\ \sqrt{3}x_1 - y_1 - 2z_1 = 0, \end{cases}$$

取 $z_1=2$,则 $y_1=-1$, $x_1=\sqrt{3}$,所以 $\overrightarrow{n_1}=(\sqrt{3},-1,2)$ 为平面 A_1BE 的一个法向量.

即
$$\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$$
 如 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 如 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$ 可 $\left\{\begin{array}{c} -2\lambda y_2 + z_2 = 0, \\ \sqrt{3}\lambda x_2 - \lambda y_2 = 0, \end{array} \right\}$

设平面 A_1BE 与平面 MNE 所成的锐二面角为 θ ,

则
$$\cos\theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|} = \frac{|4\sqrt{3}\lambda|}{2\sqrt{2} \cdot \sqrt{4+12\lambda^2}} = \frac{1}{2},$$
解得 $\lambda = \pm \frac{\sqrt{3}}{3}$,

又
$$0 \le \lambda \le 1$$
,所以 $\lambda = \frac{\sqrt{3}}{3}$.

10. 解: (1) ::在等比数列 $\{a_n\}$ 中, $a_1 = 1$,q = 3,

$$\therefore a_{n+1} = a_1 q^n = 3^n.$$

$$X_n = \frac{a_1(1-q^n)}{1-q} = \frac{1-3^n}{1-3} = \frac{3^n-1}{2},$$

$$\therefore S_n = \frac{a_{n+1}-1}{2}.$$

(2)由(1)知数列 $\{2na_n\}$ 的通项公式为 $2na_n = 2n \times 3^{n-1}$,

$$\label{eq:total_transform} \div T_n = 2(1 \times 3^0 + 2 \times 3^1 + 3 \times 3^2 + \dots + n \times 3^{n-1}), \quad \mbox{(1)}$$

$$3T_n = 2[1 \times 3^1 + 2 \times 3^2 + \dots + (n-1) \times 3^{n-1}] + 2n \times 3^n,$$
 (2)

①
$$-$$
 ②得 $-2T_n = 2(3^0 + 3^1 + 3^2 + \dots + 3^{n-1}) - 2n \times 3^n = 2 \times \frac{1-3^n}{1-3} - 2n \times 3^n = 3^n - 3^n + 3^n$

$$2n \times 3^n - 1 = (1 - 2n) \times 3^n - 1$$

$$\therefore T_n = \frac{1}{2}[(2n-1) \times 3^n + 1] = (n - \frac{1}{2}) \times 3^n + \frac{1}{2}.$$

11. 解: (1)由题意可得{
$$b = \sqrt{3} \\ \frac{e}{a} = \frac{1}{2} \\ a^2 = b^2 + c^2$$

则椭圆的标准方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$.

(II) 当
$$l: x = 1$$
,则 $S = \frac{1}{2}|AB| \cdot |OF_2| = \frac{1}{2} \times 3 \times 1 = \frac{3}{2}$,

当直线存在斜率,设
$$l: y = k(x-1), k \neq 0, A(x_1, y_1), B(x_2, y_2)$$

$$\begin{cases} y = k(x-1) \\ 3x^2 + 4y^2 = 12 \end{cases} \Rightarrow$$

$$(4k^2+3)x^2-8k^2x+4k^2-12=0x_1+x_2=\frac{8k^2}{4k^2+3}, x_1x_2=\frac{4k^2-12}{4k^2+3} \qquad S=\frac{1}{2}|OF_2|\cdot$$

$$|y_2 - y_1| = \frac{1}{2}|y_2 - y_1| = \frac{1}{2}|k(x_2 - x_1)|$$

$$S = \frac{1}{2} |k| \sqrt{(x_1 + x_2)^2 - 4x_1 x_2}$$

$$=6\sqrt{\frac{k^4+k^2}{(4k^2+3)^2}}$$

$$S = \frac{3}{2} \sqrt{1 - \frac{2}{4k^2 + 3} - \frac{3}{(4k^2 + 3)^2}},$$

记
$$t = \frac{1}{4k^2+3}$$
, $t \in (0, \frac{1}{3})$, 则 $u(t) = -3t^2 - 2t + 1$, $t \in (0, \frac{1}{3})$ 则 $0 < u(t) < 1$,

$$0 < S < \frac{3}{2}$$

所以, 当
$$l: x = 1$$
时, $S = \frac{3}{2}$ 为最大值.