高一年级数学综合练习(2)

一. 选择题

1.已知全集 $U = \{1,2,3,4\}$,集合 $A = \{1,4\}$, $B = \{2,4\}$,则 $A \cap (C_U B) = (A_U \cap A_U \cap$).

A. {2}

B. {4}

C. {1}

D. $\{1,2,4\}$

2.若幂函数 f(x) 的图象经过点 $(3,\sqrt{3})$,则 f(4)=(

D. 2

A. 16 B. -2 3.函数 $f(x) = \lg(x+1) + \sqrt{3-x}$ 的定义域为(

A. $(-\infty,3]$

B. (-1,3]

C. [0,3]

D. (-1,3)

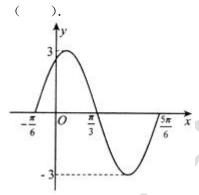
4.已知弧长为 π cm 的弧所对的圆心角为 $\frac{\pi}{4}$,则这条弧所在的扇形面积为() cm².

Α. π

B. 4π

C. 2π

D. $\sqrt{2}\pi$


5.已知向量 $\vec{a}=(4,2)$, $\vec{b}=(3,-1)$,则向量 \vec{a} 与 \vec{b} 的夹角为(

A. $\frac{\pi}{4}$

B. $\frac{3\pi}{4}$

C. $\frac{\pi}{4}$ $\frac{3\pi}{4}$

6.如图是函数 $f(x) = A\sin(\omega x + \varphi)$ (A > 0, $\omega > 0$, $|\varphi| < \frac{\pi}{2}$), 在一个周期内的图象,则其解析式是

A. $f(x) = 3\sin\left(x + \frac{\pi}{3}\right)$

B. $f(x) = 3\sin\left(2x + \frac{\pi}{3}\right)$

C. $f(x) = 3\sin\left(2x - \frac{\pi}{3}\right)$

D. $f(x) = 3\sin\left(2x + \frac{\pi}{6}\right)$

7.若 $\tan \theta = 2$,则 $2\sin^2 \theta - 3\sin \theta \cos \theta =$

A. 10

B. $\pm \frac{2}{5}$

C. 2

D. $\frac{2}{5}$

8.已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 2$, 则 $|2\vec{a} + \vec{b}| = ($).

A. $2\sqrt{7}$

C. $2\sqrt{3}$

D. $2\sqrt{5}$

9.已知函数 $f(x) = \begin{cases} \sin \frac{\pi}{2} x, & -4 \le x \le 0, \\ 2^x + 1, & x > 0, \end{cases}$ 则 y = f[f(x)] - 3 的零点为(

A 0和3

C. -3

D. -1

10.在平面直角坐标系xOy中,点 A,B 在单位圆上,且点 A 在第一象限,横坐标是 $\frac{3}{5}$,将点 A 绕原点 O顺时针旋转 $\frac{\pi}{3}$ 到 B 点,则点 B 的横坐标为(

A.
$$\frac{4-3\sqrt{3}}{10}$$

B.
$$\frac{3+4\sqrt{3}}{10}$$

A.
$$\frac{4-3\sqrt{3}}{10}$$
 B. $\frac{3+4\sqrt{3}}{10}$ C. $\frac{3\sqrt{3}-4}{10}$ D. $\frac{3\sqrt{3}+4}{10}$

D.
$$\frac{3\sqrt{3}+4}{10}$$

11.已知函数 $f(x) = e^x - e^{-x}$,则不等式 $f(2x^2 - 1) + f(x) \le 0$ 的解集为(

A.
$$(0,1]$$

B.
$$\left[-\frac{1}{2},1\right]$$

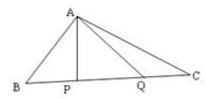
B.
$$\left[-\frac{1}{2},1\right]$$
 C. $\left[-1,-\frac{\sqrt{2}}{2}\right]$ D. $\left[-1,\frac{1}{2}\right]$

D.
$$\left[-1, \frac{1}{2}\right]$$

12.已知定义在 $(-\infty,0)$ $\cup (0,+\infty)$ 上的函数 $f(x) = \begin{cases} x^2 + 2ax, & x > 0, \\ x+1, & x < 0, \end{cases}$ 若 f(x) + f(-x) = 0 在定义域上

有 4 两个不同的解,则 a 的取值范围为(

A.
$$\left(-\infty, -\frac{1}{2}\right)$$


B.
$$\left(\frac{3}{2}, +\infty\right)$$

A.
$$\left(-\infty, -\frac{1}{2}\right)$$
 B. $\left(\frac{3}{2}, +\infty\right)$ C. $\left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{3}{2}, +\infty\right)$ D. $\left(-\frac{1}{2}, \frac{3}{2}\right)$

13.计算:
$$\left(\frac{8}{27}\right)^{-\frac{2}{3}} - \lg\sqrt{2} - \lg\sqrt{5} = \underline{\qquad}$$

14.若
$$\sin\left(x + \frac{\pi}{6}\right) = \frac{1}{3}$$
,则 $\sin\left(2x - \frac{\pi}{6}\right) =$ _____.

15.三角形 ABC 中,已知 AC=4, AB=2, $\overrightarrow{BC}=3\overrightarrow{BP}$, $\overrightarrow{CB}=4\overrightarrow{CQ}$, $\overrightarrow{AP}\cdot\overrightarrow{AQ}=4$,则 $\overrightarrow{AB}\cdot\overrightarrow{AC}=4$

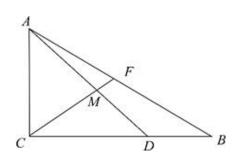
16.已知函数 $f(x) = x + \frac{a}{x}$,其中 $a \in R$, 若关于 x 的方程 $f(|2^x - 1|) = 2a + \frac{1}{3}$ 有三个不同的实数解, 则实数 a 的取值范围是

三. 解答题

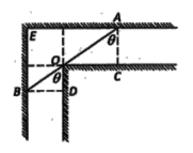
17.设全集 U = R, 集合 A = $\{x | -1 < x - m < 5\}$, B = $\{x | \frac{1}{2} < 2^x < 4\}$.

- (1) 当m=1时,求 $A\cap (C_UB)$;
- (2) 若 $A \cap B = \emptyset$, 求实数 m 的取值范围.

18.已知 $\cos \alpha = \frac{4}{5}$, $\cos(\alpha + \beta) = \frac{5}{13}$, α , β 均为锐角.


(1) 求 $\sin 2\alpha$ 的值; (2) 求 $\sin \beta$ 的值.

19.已知向量 $\vec{a} = \left(\sqrt{3}\cos x + \sin x, 4\sin x\right)$, $\vec{b} = \left(\sqrt{3}\cos x + \sin x, -\sqrt{3}\cos x\right)$,设 $f(x) = \vec{a} \cdot \vec{b}$.


(1) 将f(x)的图像向右平移 $\frac{\pi}{3}$ 个单位,然后纵坐标不变,横坐标变为原来的 2 倍得到g(x)的图像,求g(x)的单调增区间;(2) 若 $x \in \left[0, \frac{\pi}{3}\right]$ 时, $mf(x) + m \geq f(x) + 2$ 恒成立,求实数m的取值范围.

20.在三角形 ABC 中, AB=2 , AC=1 , $\angle ACB=\frac{\pi}{2}$, D 是线段 BC 上一点,且 $\overrightarrow{BD}=\frac{1}{2}$ \overrightarrow{DC} , F 为线段 AB 上一点.

- (2) 求 $\overrightarrow{CF} \cdot \overrightarrow{FA}$ 的取值范围;
- (3) 若F为线段AB的中点,直线CF与AD相交于点M,求 $\overrightarrow{CM} \cdot \overrightarrow{AB}$.

- 21. 一根长为 L 的铁棒 AB 欲通过如图所示的直角走廊,已知走廊的宽AC = BD = 1^米.
- (1) $^{\mathcal{Q}} \angle BOD = \theta$, 试将 L 表示为 θ 的函数;
- (2) 求 L 的最小值,并说明此最小值的实际意义.

- 22.若函数 $f(x) = x|x-m|+m^2$, $m \in R$
 - (1) 若函数 f(x) 为奇函数,求 m的值;
- (2) 若函数 f(x) 在 $x \in [1,2]$ 上是增函数,求实数 m 的取值范围;
- (3) 若函数 f(x)在 $x \in [1,2]$ 上的最小值为7, 求实数 m的值.