江苏省仪征中学 2021-2022 学年度第一学期高三数学学科导学案

§ 9.1 三角恒等变换

研制人: 刘威 审核人: 陈宏强

班级:	姓名:	学号:	授课日期:	2021. 10. 25
-----	-----	-----	-------	--------------

①经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。

②能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式, 了解它们的内在联系.

③能利用辅助角公式化简。

课前热身

- 1. cos 24°cos 36° cos 66°cos 54°的值等于(
- B. $\frac{1}{2}$
- C. $\frac{\sqrt{3}}{2}$ D. $-\frac{1}{2}$
- 2. 己知函数 $f(x) = \sin^2 x + \sin^2(x + \frac{\pi}{3})$,则f(x)的最小值为()
 - A. $\frac{1}{2}$
- B. $\frac{1}{4}$
- C. $\frac{\sqrt{3}}{4}$
- D. $\frac{\sqrt{2}}{2}$
- 3. 已知 $\sin \alpha + \sin \beta = \frac{4}{5}$, $\cos \alpha + \cos \beta = \frac{3}{5}$, 则 $\cos (\alpha \beta)$ 的值为()
 - A. $\frac{9}{25}$
- B. $\frac{16}{25}$
- C. $\frac{1}{2}$
- D. $-\frac{1}{2}$

- A. $-\frac{7}{9}$ B. $\frac{7}{9}$ C. $-\frac{4\sqrt{2}}{9}$ D. $\frac{4\sqrt{2}}{9}$

- 5. (多)下列选项中,值为 $\frac{1}{4}$ 的是()
 - A. cos72°cos36°

B. $\frac{1}{\sin 50^{\circ}} + \frac{\sqrt{3}}{\cos 50^{\circ}}$

C. $\sin \frac{\pi}{12} \sin \frac{5\pi}{12}$

- D. $\cos^2 \frac{\pi}{12} \sin^2 \frac{\pi}{12}$
- 6. 己知 $\tan (\alpha \beta) = \frac{1}{2}$, $\tan \beta = -\frac{1}{7}$, 且 $\alpha, \beta \in (0, \pi)$, 则 $2\alpha \beta =$ _____.

知识梳理

- 1. 两角和与差的正弦、余弦、正切公式
- 2. 二倍角公式
- 3. 辅助角公式

典例研究

例 1 (1)
$$\frac{\sin 47^{\circ} - \sin 17^{\circ} \cos 30^{\circ}}{\sin 17^{\circ}}$$

(2) $tan25^{\circ} + tan35^{\circ} + \sqrt{3}tan25^{\circ}tan35^{\circ}$.

$$(3)\sin(x+\frac{\pi}{3})+2\sin(x-\frac{\pi}{3})-\sqrt{3}\cos(\frac{2\pi}{3}-x)$$

例 2. (1)设
$$0 < \beta < \alpha < \frac{\pi}{2}$$
, 且 $\cos \alpha = \frac{1}{7}$, $\cos(\alpha - \beta) = \frac{13}{14}$,求角 β 的值;

(2)已知
$$\tan \alpha = \frac{2}{3}$$
, 且 $\sin (2\alpha + \beta) = \frac{3}{2} \sin \beta$, 求 $\tan (\alpha + \beta)$ 的值.

例 3. 已知函数
$$f(x) = \sin(\omega x + \frac{\pi}{6}) + \sin(\omega x - \frac{\pi}{6}) + 2\cos^2\frac{\omega x}{2}, x \in \mathbb{R}, \omega > 0$$
, $f(x)$ 在 (a,b) 上单调递增,且 $b-a$ 的最大值为 $\frac{\pi}{2}$.

- (1)求f(x)的解析式;
- (2)若 $x \in [0,\frac{\pi}{2}]$, 求f(x)的单调递增区间和最值;
- (3)在(2)的条件下,若函数g(x) = f(x) k有且仅有一个零点,求实数k的取值范围.

跟踪反馈

1. $4\cos 50^{\circ} - \tan 40^{\circ} = ($

A. $\sqrt{2}$

B. $\frac{\sqrt{2}+\sqrt{3}}{2}$

C. $\sqrt{3}$ D. $2\sqrt{2} - 1$

2. 已知 $\tan \alpha = 3$, $\alpha \in \left(0, \frac{\pi}{2}\right)$,则 $\sin 2\alpha + \cos(\pi - \alpha)$ 的值为()

A. $\frac{6-\sqrt{10}}{10}$ B. $\frac{6+\sqrt{10}}{10}$ C. $\frac{5-\sqrt{10}}{10}$ D. $\frac{5+\sqrt{10}}{10}$

3. 己知 $\alpha \in \left(0, \frac{\pi}{2}\right)$, $2\sin 2\alpha = \cos 2\alpha + 1$, 则 $\sin \alpha = ($)

B. $\frac{\sqrt{5}}{5}$ C. $\frac{\sqrt{3}}{2}$ D. $\frac{2\sqrt{5}}{5}$

4. 已知 $0 < \beta < \frac{\pi}{2} < \alpha < \pi$,且 $\cos\left(\alpha - \frac{\beta}{2}\right) = -\frac{1}{9}$, $\sin\left(\frac{\alpha}{2} - \beta\right) = \frac{2}{3}$,则 $\cos(\alpha + \beta)$ 的值为(

A. $-\frac{239}{720}$ B. $\frac{239}{720}$

C. -1

D. 1

5. 在平面直角坐标系xOy中,点A,B在单位圆上,且点A在第一象限,横坐标是 $\frac{3}{5}$,将点A绕原点O顺时针

旋转 $\frac{\pi}{3}$ 到B点,则点B的横坐标为(

A. $\frac{4-3\sqrt{3}}{10}$ B. $\frac{3+4\sqrt{3}}{10}$ C. $\frac{3\sqrt{3}-4}{10}$ D. $\frac{3\sqrt{3}+4}{10}$

6. (多)若 $\tan x_1$, $\tan x_2$ 是方程 $x^2 - kx + 2 = 0$ 的两个不相等的正根,则下列结论正确的是()

A. $\tan x_1 + \tan x_2 = -k$

B. $tan(x_1 + x_2) = -k$

C. $k > 2\sqrt{2}$

D. $k > 2\sqrt{2}$ 或 $k < -2\sqrt{2}$

7. (多)已知函数 $f(x)=\sin\omega x+\sqrt{3}\cos\omega x(\omega>0)$,若有且仅有两个不同的实数 $x_1,\ x_2\in[0,1]$,使得 $f(x_1) = f(x_2) = 2$.则实数ω的值可能为(

A. $\frac{13}{6}\pi$ B. 3π

C. $\frac{19}{6}\pi$ D. $\frac{25}{6}\pi$

8. (多) 若 $\alpha \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$,且 $3\cos 2\alpha = \cos\left(\frac{\pi}{4} + \alpha\right)$,则 $\sin 2\alpha$ 可能是()

A. $-\frac{\sqrt{35}}{6}$

B. 1

C. $-\frac{\sqrt{35}}{18}$ D. $-\frac{17}{18}$

三、填空题

9. 己知 $\cos(\alpha - \frac{\pi}{4}) = \frac{3}{5}$,且 $\alpha \in (0, \frac{\pi}{4})$,则 $\sin \alpha = \underline{\hspace{1cm}}$

10. $\tan 70^\circ + \tan 50^\circ - \sqrt{3} \tan 50^\circ \tan 70^\circ = \underline{\hspace{1cm}}$

11. 己知 $0 < \alpha < \frac{\pi}{2} < \beta < \pi$,且 $\cos \alpha = \frac{\sqrt{5}}{5}$, $\sin \beta = \frac{\sqrt{10}}{10}$,则 $\alpha + \beta = \underline{\hspace{1cm}}$

四、解答题

- - (1)求sinx的值;(2)求 $cos(2x + \frac{\pi}{6})$ 的值.

- 13. 已知函数 $f(x) = 2\cos x(\sqrt{3}\sin x + \cos x) 1$.
 - (1)求f(x)在区间 $[0,\pi/2]$ 上的单调递增区间及最值; (2)若 $\alpha \in (0,\pi)$, $f(\frac{\alpha}{2}) = \frac{2}{3}$,求 $\sin(\alpha + \frac{\pi}{3})$ 的值.
 - (3) 若函数 $y = f(\frac{\omega x}{2})$ 在区间 $(\frac{\pi}{3}, \frac{2\pi}{3})$ 上是单调增函数,求正数 ω 的取值范围。