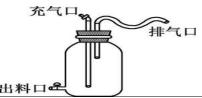
江苏省仪征中学 2021-2022 学年度第一学期高三生物学科导学案

传统发酵技术的应用

班级:		姓名:	学号:	授课日期:	12. 3
【本课	【本课在课程标准里的表述】				
	理解发酵与传统发酵技术的概念: 学习制作泡菜、果酒和果醋的原理和方法。				
		,	:验探究过程中解决问题的能力。	Δ •	
手煙(2)		也过关以证 月在关	等近1本儿过往中期较问题的形力。		
		正改畝			
一、 ^利 1. 泡菜		亚硝酸盐的含量			
,		左 芸 芸 上 的	(原核生物, 异养厌氧型)。		
			(
(3)制化		_本 IT 1',		3	
(0) (1)	_	Water SH SA	测定亚硝酸盐含量		
	选择	-		•	
	原料	切分成条状或	加入调味 发酵 成品)	
				J	
	称取	\rightarrow	四菜 /		
	食盐	盐水」(盐	盐水		
0 =====================================		جدرا،			
	i酸盐含量的测 酸ルタ # エ . ㅠ		发生重氮化反应后,与 N	1 本甘フー貯払	またた 人 T/ 卍
				□I¬余圣乙—胺益	数盘结合形 放
		č, 大致估算亚硝酸 L/c	(血 4 里。		
	:酒、果醋的制 :割佐雲亜的溫		属于核生物;它是一种	开山	(化油米利) ७
1. 未作	时下而安的饭 试	(生物定 <u> </u>	值的方式大量增殖,通过呼		(八) (別) (八) (別) (八) (別) (円) (別) (別) (円) (別) (別) (別) (別) (別) (別) (別) (別) (別) (別
			属于核生物;它的代谢类型		刑急生物
		(王初足 直通入 。	两 1	E足 作	至版工初,
	i和果醋制作流	辞 ———		-	
0. /(1)	1.16214111111111111111111111111111111111	挑选葡萄	► 榨汁 酒精发團	酵→醋酸发酵	
			\longrightarrow \bigcirc \bigcirc		
(1) 里》	西制作的条件 :	:温度:;() _o •		
(2) 果西	醋制作的条件· 醋制作的条件·	·温度:;(0:		
【导读】		, (1111/2, (°		
		海芸的制作			
1. 比较 项目	是果酒和果醋、 果酒的制作	果醋的制作	泡菜的	制作	
- 火口	酵母菌(真		他未即	H111-	
#: 1 .	核生物,异	醋酸菌(原核生	到 彩带 / 百枚 / / / · · · · · · · · · · · · · · · ·		
菌种	养兼性厌氧	型)	乳酸菌(原核生物, 异养厌氧型)		
	型)				
	大士与叶	在缺少糖源和			
E 700	在有氧时,	有氧条件下,可将乙醇氧化成			
	繁殖;在无				
原理	氧时,酵母		在无氧条件下,乳酸菌将葡萄糖分解	成乳酸	
	菌进行酒精	充足时,醋酸菌			
	发酵	将葡萄汁中的			
		糖分解成醋酸			

项目


果酒的制作

果醋的制作

泡菜的制作

	T		
反应式	$C_6H_{12}O_6+6O_2+6$		
	H ₂ O	C ₆ H ₁₂ O ₆ +2O ₂ 一酶	
	6CO ₂ +12H ₂ O+ 能量	2CH ₃ COOH+2H ₂ O+ 2CO ₂ +能量	C ₆ H ₁₂ O ₆ → 2C ₃ H ₆ O ₃ +能量
	C ₆ H ₁₂ O ₆ 酶	C ₂ H ₅ OH+O ₂ 酶	
	2C ₂ H ₅ OH+2CO ₂ +能量	CH ₃ COOH +H ₂ O+ 能量	
原料选 择	新鲜葡萄(或苹果)等		萝卜、黄瓜、豇豆等新鲜蔬菜
发酵温 度	1825 ℃ (或 1830℃)	3035℃	室温
对氧需 求	前期需氧,后期不需氧	需充足氧	不需氧
检测指标	嗅味、品尝、 镜 检 酵 母 菌、通过酸 性重铬酸钾 检测酒精	是否形成菌膜、 嗅味、品尝、镜 检醋酸菌和 pH 检测	色泽、口味、亚硝酸盐含量等
共同点	都是天然的发	文酵,利用了微生物	勿新陈代谢过程中代谢产物的作用或直接获取代谢产物

2. 果酒、果醋的制作

结构或操作	目的
充气口	醋酸发酵时连接充气泵进行充气
排气口	酒精发酵时用来排出 CO₂
长而弯曲的形 管	防止空气中微生物的污染
出料口	便于取料, 及时监测发酵进行的情况
制酒时	关闭充气口
制醋时	充气口连接气泵, 输入无菌空气或 O₂

- 3. 泡菜制作中营造"无氧环境"的三项措施
- (1) 选择的泡菜坛要密封性好。
- (2) 加入蔬菜后要注入煮沸冷却的盐水(5%8%为宜), 使盐水没过全部菜料。
- (3) 盖上坛盖后要在坛盖边沿的水槽中注满清水。
- 4. 与传统发酵有关的几类微生物

比较项目	酵母菌	醋酸菌	乳酸菌
生物学分类	真核生物	原核生物	原核生物
代谢类型	异养兼性厌氧	异养需氧	异养厌氧
适宜温度	20 ℃左右	3035 ℃	室温
原理	无氧呼吸产生酒精	糖(酒精)代谢产生 醋酸	无氧呼吸 产生乳酸
主要用途	酿酒、发面	酿醋	制作酸奶、泡菜

【导思】

- (1) 制作泡菜、酸菜时, 坛子必须密封, 防止乳酸菌在有氧条件下发酵被抑制。 (1)
- (2) 泡菜发酵过程中乳酸菌可以分解蛋白质和果胶。 ()
- (3) 泡菜制作过程中会有亚硝酸盐产生,哪些因素都会对其含量有影响?

【导练】

例题 1: 在制作泡菜并检测亚硝酸盐含量的实验中,说法错误的是 ()

- A. 随着泡制时间的增加,泡菜中亚硝酸盐含量先升高后降低
- B. 制作过程中食盐用量过低,制作温度过高,都易造成细菌大量繁殖
- C. 膳食中的少量亚硝酸盐一般不会危害到人体健康
- D. 该实验中利用的乳酸菌是一种兼性厌氧菌

变式 1: 家庭中制作泡菜的方法:新鲜的蔬菜经过整理、清洁后,放入彻底清洗并用白酒擦拭过的泡菜坛中,然后向坛中加入盐水、香辛料及一些"陈泡菜水",密封后置于温度适宜的地方。下列与此过程相关的叙述,不正确的是 ()

- A. 用白酒擦拭泡菜坛的目的是消毒
- B. 加入"陈泡菜水"的作用是提供乳酸菌菌种
- C. 制作泡菜过程中, 有机物的干重和种类将减少
- D. 若制作的泡菜咸而不酸最可能的原因是大量的食盐抑制了乳酸菌的发酵过程

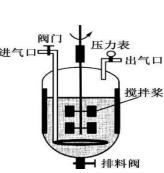
【导读】

- (1) 材料的选择与处理:选择新鲜的葡萄,榨汁前先冲洗后去枝梗。对于果酒的自然发酵,冲洗不要反复进行,以免使酵母菌数量减少,发酵周期加长,产生的果酒中酒精含量下降。
- (2) 发酵条件的控制
- ①葡萄汁装入发酵瓶时,要留约 1/3 的空间,目的是先让酵母菌有氧呼吸大量繁殖,再进行酒精发酵,还能防止发酵过程中产生的 CO₂造成发酵液溢出。
- ②果酒发酵过程中先通 0₂ 促进有氧呼吸以利于酵母菌大量繁殖,后密闭充气口以利于酵母菌进行酒精发酵。发酵过程中,适时的拧松瓶盖,放出产生的 CO₂。而醋酸发酵为有氧发酵,需适时通过充气口充入无菌空气。
- ③严格控制温度:1825 ℃利于酵母菌的繁殖和酒精发酵;3035 ℃利于醋酸菌的繁殖和醋酸发酵。
- (3) 防止发酵液被污染
- ①榨汁机要清洗干净,并晾干。
- ②发酵瓶要洗净并用体积分数为70%的酒精消毒,杀灭部分微生物,减少杂菌污染。
- ③装入葡萄汁后发酵瓶要密封或后期封闭充气口。无氧、偏酸性、1825 ℃条件下,适合酵母菌的生存,不适合绝大多数微生物的生存。

【导思】

- (1) 在果酒发酵后期, 拧松瓶盖的间隔时间可延长。 ()
- (2) 在制作果醋时,如果条件适宜,醋酸菌可将葡萄汁中的糖分解成醋酸。 (2)
- (3) 果酒制作时,应该从哪些方面防止发酵液被污染?(至少答两点)

【导练】


例题 2: 某高校采用如右图所示的发酵罐进行葡萄酒主发酵过程的研究,下列有**进气口**关叙述错误的是 ()

- A. 夏季生产果酒时, 常需对罐体进行降温处理
- B. 乙醇为挥发性物质, 故发酵过程中空气的进气量不宜太大
- C. 正常发酵过程中罐内的压力不会低于大气压
- D. 可以通过监测发酵过程中残余糖的浓度来决定何时终止发酵

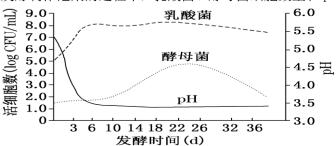
变式2:下列有关果酒、果醋和腐乳制作的叙述,错误的是 ()

- A. 果酒发酵到一定阶段,酒精生成量将逐渐下降
- B. 腐乳制作利用的是毛霉等微生物产生的胞内酶
- C. 醋酸菌只有在供氧充足的条件下,才能进行果醋发酵
- D. 通过人工接种菌种,可以提高各种发酵产品的质量

课后反思:

江苏省仪征中学 2021—2022 学年度第一学期高三生物学科作业

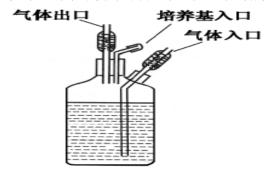
传统发酵技术的应用


班级:	姓名:	学号:	时间:	作业时长:	30 分钟
-----	-----	-----	-----	-------	-------

- 一、 单项选择题
 - 1. 某同学在酿制果醋时,先进行酒精发酵,然后转入醋酸发酵,结果发现果醋产量较低,其原因不可能是()
 - A. 由酒精发酵转入醋酸发酵时调低了温度
 - B. 在发酵过程中混入了其他微生物,造成了污染
 - C. 酒精发酵后通入氧气,导致醋酸发酵受到抑制
 - D. 酒精发酵产生的酒精浓度过高,抑制了醋酸发酵
 - 2. 红酸汤是苗族人民的传统食品,它颜色鲜红、气味清香、味道酸爽。以番茄和辣椒为原料的红酸汤制作流程如下。下列相关叙述中正确的是()

选择原料→洗净擦干→装坛→密封发酵→成品


- A. 红酸汤制作过程中用到的微生物主要是醋酸菌
- B. 装坛时加入成品红酸汤是为了增加发酵菌种的数量
- C. 装坛时不装满的原因是为了促进微生物繁殖
- D. 红酸汤的制作中发酵时间越长,口味越纯正
- 3. 在实验室中可利用酵母菌发酵的方式制作葡萄酒,下列说法正确的是()
- A. 葡萄糖在酵母菌细胞的线粒体内被分解
- B. 制作葡萄酒时酵母菌先在有氧条件下大量增殖
- C. 制作过程中酵母菌始终处于碱性环境
- D. 酵母菌的发酵产物不会抑制自身的代谢活动
- 4. 利用卷心菜发酵制作泡菜的过程中,乳酸菌、酵母菌细胞数量和 pH 的变化如图所示。下列叙述错



- A. 酵母菌和乳酸菌均有核膜包被的细胞核
- B. 发酵初期乳酸菌建立了明显的菌种优势
- C. 前 6 天 pH 下降主要由乳酸菌代谢引起
- D. 发酵中期酵母菌通过无氧呼吸进行增殖
- 5. 下列有关泡菜的制作和亚硝酸盐含量测定实验的叙述, 正确的是()
- A. 将新鲜蔬菜与煮沸冷却的盐水(盐和清水的质量比为 4:1) 混匀装瓶
- B. 发酵过程始终要保持密封状态,泡菜坛盖边沿的水槽中要始终装满水
- C. 在酸化条件下,亚硝酸盐与对氨基苯磺酸发生重氮化反应形成玫瑰红色沉淀
- D. 随着发酵的进行,亚硝酸盐含量逐渐增加,用比色法可进行亚硝酸盐含量的测定
- 6. 以下关于微生物发酵的说法,正确的是()
- A. 利用乳酸菌制作泡菜需先通气培养,后密封发酵
- B. 利用葡萄表面天然酵母制作葡萄酒通常不是单一菌种发酵
- C. 果醋制作过程中发酵液 pH 逐渐降低,果酒制作过程中情况相反
- D. 利用微生物发酵进行的食品加工往往需要严格灭菌
- 7. 下列关于家庭泡菜腌制及亚硝酸盐含量测定实验的叙述,错误的是()
- A. 泡菜质量可通过显微镜观察比较不同时期泡菜坛中乳酸菌的含量来评定
- B. 乳酸菌产生的乳酸不利于其菌种优势的保持
- C. 制作过程不必严格无菌操作
- D. 与标准显色液比较估测泡菜中的亚硝酸盐含量

8. 如图所示装置可用于生物技术实践的相关实验,下列有关叙述正确的是()

- A. 装置乙既可用于果酒的制作,又可用于果醋的制作
- B. 利用装置甲制作果酒时, 瓶中的果汁不能装满, 要留有 2/3 的空间
- C. 用装置乙制作果酒时温度应控制在 30 ℃左右,制作果醋时应适当降温
- D. 装置乙的充气口在制作果酒和果醋时要始终打开
- 9. 白菜和白萝卜都可经过发酵制成泡菜。关于二者发酵过程共性的叙述,正确的是()
- A. 随发酵时间的延长,乳酸菌的数量都呈增加趋势,达到最大值后减少
- B. 随发酵时间的延长,亚硝酸盐的含量呈减少趋势
- C. 发酵时都不需要密封
- D. 腌制时间一定相同
- 10. 泡菜发酵的微生物主要是乳酸菌,而在发酵初期,水槽内经常有气泡产生,这些气泡产生的主要原因及成分分别是()
- A. 发酵初期泡菜坛内含有一定的氧气,酵母菌活动强烈,其呼吸过程会产生 CO2; 气体为 CO2
- B. 乳酸菌是兼性厌氧型微生物,初期进行有氧呼吸产生 CO2; 气体为 CO2
- C. 因腌制过程中的盐进入蔬菜使蔬菜体积缩小, 气体被排出: 气体为空气
- D. 乳酸菌在发酵过程中产生了热量使坛内温度升高,空气受热膨胀排出;气体为空气
- *11. (多选)下图是探究果酒与果醋发酵的装置示意图。下列相关叙述正确的是

- A. 改变通入气体种类,可以研究呼吸作用类型对发酵的影响
- B. 果酒发酵中期通入氮气,酵母菌将从有氧呼吸转变为无氧呼吸
- C. 果醋的发酵周期与实验设定的温度密切相关
- D. 气体入口与气体出口可以交换使用
- *12. 我国的酿酒技术历史悠久,古人在实际生产中积累了很多经验。《齐 民要术》记载:将蒸熟的米和酒曲混合前需"浸曲发,如鱼眼汤,净淘米八斗,炊作饭,舒令极冷"。意思是将酒曲浸到活化,冒出鱼眼大小的气泡,把八斗米淘净,蒸熟,摊开冷透。下列说法正确的是()
 - A. "浸曲发"过程中酒曲中的微生物代谢加快
 - B. "鱼眼汤"现象是微生物呼吸作用产生的 CO2 释放形成的
 - C. "净淘米"是为消除杂菌对酿酒过程的影响而采取的主要措施
 - D. "舒令极冷"的目的是防止蒸熟的米温度过高导致酒曲中的微生物死亡
 - *13. 利用发酵技术生产食品在我国有着悠久的历史,请回答下列问题:

(1)在果酒制作中,温度是重要的控制条件,左右的温度最适合酵母菌繁殖,酵母菌无氧呼吸产生的酒精可用溶液进行检验。制作葡萄酒的过程中,当发酵瓶内表示发酵完毕。喝剩的葡萄酒放置一段时间后会变酸,原因是
(2) 乳酸菌能产生亚硝酸还原酶将亚硝酸盐分解。某兴趣小组从泡菜滤液中筛选出能产生亚硝酸盐还原酶活力较高的乳酸菌,用于泡菜制作过程中亚硝酸盐含量变化的实验探索,结果如图所示。 —— 5% NaCl —— 10% NaCl —— 15% NaCl —— 15% NaCl —— 16 施制时间(d)
①泡菜制作过程中,pH呈下降趋势,原因是。②实验结果说明,NaC1 浓度越高,亚硝酸盐含量的峰值,且出现时间。③亚硝酸盐含量达到峰值后下降的原因:一方面由于
(2)高温蒸汽条件下需要蒸一段时间,其目的是
(3)图中流程第三步,一般要冷却至 35 ℃左右时才可"加曲"的原因是

1-5 CBBAB 6-10 BCAAA 11. ABC 12.ABD

- 13. (1)20 ℃ 酸性重铬酸钾 停止出现气泡 空气中的醋酸菌混入葡萄酒后发酵产生 了醋酸
- (2)①乳酸菌无氧呼吸产生了乳酸 ②越低 越迟 ③缺氧 酸性 乳酸菌产生的亚硝酸还原酶将亚硝酸盐分解 ④后者出现玫瑰红色,前者无
- 14. (1)既要增大微生物与粮食中有机物的接触面,又要有一定透气性便于接种、发酵和蒸馏
 - (2)消灭杂菌(或消毒灭菌) 使淀粉分子在高温下被破坏分解以利于微生物利用
 - (3)防止温度过高烫死酒曲中的酵母菌等微生物 接种菌种
 - (4)此温度是酵母菌等酿酒微生物的适宜温度 78 ℃为酒精的沸点