例 1 已知函数 $f(x) = \sin x - \ln(1+x)$, f'(x)为 f(x)的导数,证明:

(1)f'(x)在区间 $\left(-1, \frac{\pi}{2}\right)$ 上存在唯一极大值点;

(2)f(x)有且仅有 2 个零点.

审题路线图

- (1)设 g(x)=f'(x) \rightarrow 对 g(x) 求导 \rightarrow 得出 g(x)的单调性, 得证
- (2)对 x 进行讨论→分四个区间(-1, 0], $\left(0,\frac{\pi}{2}\right]$, $\left(\frac{\pi}{2},\pi\right]$, $(\pi,+\infty)$, 根据用导数判断函数 单调性来确定零点个数

规 范 解 答 分 步 得 分	构 建 答
	题 模 板
证明 (1)设 $g(x)=f'(x)$, 则 $g(x)=\cos x-\frac{1}{1+x}$, $g'(x)=-\sin x+\frac{1}{(1+x)^2}$.	第一步
	求导数: 对
	复杂函数性
当 x ∈ $\left(-1,\frac{\pi}{2}\right)$ 时, $g'(x)$ 单调递减, ····································	质的讨论,
而 $g'(0)>0$, $g'(\frac{\pi}{2})<0$, 可得 $g'(x)$ 在 $\left(-1,\frac{\pi}{2}\right)$ 有唯一零点,设为 α .	可通过二次
	求导.
则当 $x \in (-1, \alpha)$ 时, $g'(x) > 0$;当 $x \in \left(\alpha, \frac{\pi}{2}\right)$ 时, $g'(x) < 0$.	第二步
所以 $g(x)$ 在 $(-1, \alpha)$ 上单调递增,在 $\left(\alpha, \frac{\pi}{2}\right)$ 上单调递减,4 分	看性质:通
	过导函数的
故 $g(x)$ 在 $\left(-1, \frac{\pi}{2}\right)$ 上存在唯一极大值点,	符号确定函
π	数的单调
即 $f'(x)$ 在 $\left(-1, \frac{\pi}{2}\right)$ 上存在唯一极大值点	性,结合草
(2) $f(x)$ 的定义域为(-1 , $+\infty$)	图分析函数
①当 $x \in (-1,0]$ 时,由(1)知, $f'(x)$ 在(-1,0)上单调递增.而 $f'(0)$ =0,	的零点、极
所以当 $x \in (-1,0)$ 时, $f'(x) < 0$,故 $f(x)$ 在($-1,0$)上单调递减.	值等性质.
又 $f(0)=0$,从而 $x=0$ 是 $f(x)$ 在 $(-1,0]$ 上的唯一零点;7 分	第三步
②当 $x \in \left(0, \frac{\pi}{2}\right]$ 时,由 (1) 知, $f'(x)$ 在 $(0, \alpha)$ 上单调递增,在 $\left(\alpha, \frac{\pi}{2}\right)$ 上单调递减,	找联系: 寻
(π)	找要求结论
$\overline{m} f'(0) = 0, f'(\frac{\pi}{2}) < 0,$	和函数性质
所以存在 $\beta \in \left(\alpha, \frac{\pi}{2}\right)$, 使得 $f'(\beta) = 0$, 且当 $x \in (0, \beta)$ 时, $f'(x) > 0$;	的联系,通
	过所得函数
当 $x \in \left(\beta, \frac{\pi}{2}\right)$ 时, $f'(x) < 0$.	性质解决所

故 f(x)在 $(0, \beta)$ 上单调递增,在 $\left(\beta, \frac{\pi}{2}\right)$ 上单调递减. ……8分

所以当 $x \in \left(0, \frac{\pi}{2}\right]$ 时, f(x) > 0.

③当
$$x \in \left(\frac{\pi}{2}, \pi\right]$$
时, $f'(x) < 0$, 所以 $f(x)$ 在 $\left(\frac{\pi}{2}, \pi\right)$ 上单调递减.而 $f\left(\frac{\pi}{2}\right) > 0$, $f(\pi) < 0$,

④当 $x \in (\pi, +\infty)$ 时, $\ln(x+1) > 1$,

求问题. 第四步 规范答:审 视思路,规 划并书写规 范步骤.

评分细则 第(1)问:对函数 f(x)两次求导给 2 分;判断出新函数 g'(x)的单调性给 1 分;确定 g(x)存在唯一极大值点给 1 分;结论给 1 分.

第(2)问: 求出 f(x)定义域给 1 分; 确定区间(-1,0]上的零点个数给 1 分; 确定区间(0, $\frac{\pi}{2}$]上的零点个数给 2 分,确定区间($\frac{\pi}{2}$, π]上的零点个数给 1 分;确定区间(π , $+\infty$)上的零点个数给 1 分;结论给 1 分.

跟踪演练 已知函数 $f(x) = \ln x - \frac{x+1}{x-1}$

- (1)讨论 f(x)的单调性,并证明 f(x)有且仅有两个零点;
- (2)设 x_0 是f(x)的一个零点,证明: 曲线 $y=\ln x$ 在点 $A(x_0, \ln x_0)$ 处的切线也是曲线 $y=e^x$ 的切线.
- (1)解 f(x)的定义域为(0,1) \cup $(1, +\infty)$.

因为 $f'(x) = \frac{1}{x} + \frac{2}{(x-1)^2} > 0$,所以f(x)在(0,1),(1, + ∞)上单调递增.

因为 $f(e)=1-\frac{e+1}{e-1}<0$, $f(e^2)=2-\frac{e^2+1}{e^2-1}=\frac{e^2-3}{e^2-1}>0$, 所以 f(x)在 $(1, +\infty)$ 上有唯一零点 x_1 , 即 $f(x_1)=0$.

又 0
$$<\frac{1}{x_1}<1$$
, $f(\frac{1}{x_1})=-\ln x_1+\frac{x_1+1}{x_1-1}=-f(x_1)=0$, 故 $f(x)$ 在(0,1)上有唯一零点 $\frac{1}{x_1}$.

综上, f(x)有且仅有两个零点.

(2)证明 因为 $\frac{1}{x_0} = e^{-\ln x_0}$,故点 $B\left(-\ln x_0, \frac{1}{x_0}\right)$ 在曲线 $y = e^x$ 上.

由题设知 $f(x_0)=0$, 即 $\ln x_0=\frac{x_0+1}{x_0-1}$, 连接AB, 则直线AB的斜率

$$k = \frac{\frac{1}{x_0} - \ln x_0}{-\ln x_0 - x_0} = \frac{\frac{1}{x_0} - \frac{x_0 + 1}{x_0 - 1}}{-\frac{x_0 + 1}{x_0 - 1} - x_0} = \frac{1}{x_0}.$$

曲线 $y=e^x$ 在点 $B\left(-\ln x_0, \frac{1}{x_0}\right)$ 处切线的斜率是 $\frac{1}{x_0}$,曲线 $y=\ln x$ 在点 $A(x_0, \ln x_0)$ 处切线的斜率也是 $\frac{1}{x_0}$,所以曲线 $y=\ln x$ 在点 $A(x_0, \ln x_0)$ 处的切线也是曲线 $y=e^x$ 的切线.