§ 2. 2 第 3 课时 函数性质的综合问题

复习目标

- 1. 进一步理解函数的四大性质的内涵,能根据函数解析式、定义、图像发现函数的相关性质;
- 2. 理解函数的不同性质之间的相互关联,能根据相关定义推导函数的相关性质,并根据相关性质解决具体 问题。

课前热身

1. 已知函数 f(x)满足以下两个条件: ①任意 $x_1, x_2 \in (0, +\infty)$ 且 $x_1 \neq x_2, (x_1 - x_2)[f(x_1) - f(x_2)] < 0$; ②对定义域 内任意 x 有 f(x)+f(-x)=0,则符合条件的函数是()

A. f(x)=2x B. f(x)=1-|x| C. $f(x)=-x^3$ D. $f(x)=\ln(x^2+3)$

2. 已知 f(x)的定义域为 **R**, 其函数图象关于直线 x = -1 对称, 且 f(x+4) = f(x-2). 若当 $x \in [-4, -1]$ 1]

时, $f(x)=6^{-x}$,则f(919)=()

A. $-\frac{1}{216}$ B. $\frac{1}{216}$

C. -216 D. 216

3. 已知 f(x)是定义在 **R** 上的奇函数,f(x+1)是偶函数,当 $x \in (2,4)$ 时,f(x) = |x-3|,则 f(1) + f(2) + f(3) + f(4) $+...+f(2\ 020)=($).

A. 0

B. 1

C. 2

D. 4

- 4. (8选)函数 f(x)满足 f(x-1)为奇函数,f(x+1)为偶函数,则下列说法正确的是 () A.f(x)的周期为 8; B.f(x)关于点(-1,0)对称; C.f(x)为偶函数; D.f(x+7)为奇函数.
- 5. 己知 f(x)是 **R** 上的奇函数,且 f(x+2)=f(x),则 $f(2\ 020)+f(2\ 021)=$ _____
- 6. 已知定义在 **R** 上的奇函数 f(x)满足 f(x-4) = -f(x), 且在区间[0,2]上单调递增. 若方程 f(x) = m(m>0)在区 间[-8,8]上有四个不同的根 x_1 , x_2 , x_3 , x_4 , 则 $x_1+x_2+x_3+x_4=$.

知识梳理

典例研究

题型一 函数的单调性与奇偶性

- 例 1. (1) 若定义在 **R** 上的奇函数 f(x)在($-\infty$, 0)上单调递减,且 f(2)=0,则满足 $xf(x-1)\geq 0$ 的 x 的取值 范围是()
- A. $[-1,1] \cup [3, +\infty)$ B. $[-3, -1] \cup [0,1]$ C. $[-1,0] \cup [1, +\infty)$ D. $[-1,0] \cup [1,3]$
- (2)已知偶函数 f(x)在区间 $[0, +\infty)$ 上单调递增,则满足 $f(2x-1) < f(\frac{1}{3})$ 的 x 的取值范围是______.

题型二 函数的奇偶性与周期性

- 例 2. (1)已知定义在 **R** 上的奇函数 f(x)满足 f(x+2)=-f(x),当 $0 \le x \le 1$ 时, $f(x)=x^2$,则 $f(2\ 023)$ 等于(
 - A. 2.019^2
- B. 1
- C. 0
- D. -1
- (2)已知 f(x)是定义在 **R** 上以 3 为周期的偶函数,若 f(1)<1, f(5)=2a-3,则实数 a 的取值范围是

题型三 函数的奇偶性与对称性

B. 2

- 例 3. (1)已知函数 f(x)是定义域为 **R** 的奇函数,且满足 f(4-x) = -f(x),则 f(x)的周期为()
 - A. -4
- C. 4
- D. 6
- (2)函数 y = f(x)对任意 $x \in \mathbb{R}$ 都有 f(x+2) = f(-x)成立,且函数 y = f(x-1)的图象关于点(1,0)对称,
- f(1)=4,则 $f(2\ 020)+f(2\ 021)+f(2\ 022)$ 的值为______.

题型四 函数的周期性与对称性

- 例 4. (多选)已知 f(x)的定义域为 **R**, 其函数图象关于直线 x=-3 对称,且 f(x+3)=f(x-3),若当 $x \in [0,3]$ 时, $f(x) = 4^{x} + 2x - 11$,则下列结论正确的是(

 - A. f(x)为偶函数 B. f(x)在[-6, -3]上单调递减 C. f(x)关于 x=3 对称 D. f(100)=9

课堂小结

跟踪反馈

- 1. 已知定义在 R 上的偶函数 f(x)在[0, $+\infty$)上单调递增,若 $f(\ln x) < f(2)$,则 x 的取值范围是(
 - A. $(0, e^2)$
- B. $(e^{-2}, +\infty)$ C. $(e^2, +\infty)$ D. (e^{-2}, e^2)

- 2. 已知 f(x)为 R 上的奇函数,且 f(x+5)=f(x),当 $x \in \left[-\frac{5}{2}, 0\right]$ 时, $f(x)=2^x-1$,则 f(16)的值为(
 - A. $\frac{1}{2}$

- B. $-\frac{1}{2}$ C. $\frac{3}{2}$ D. $-\frac{3}{2}$
- 3. 已知函数 $f(x) = 2.020^x + \log_{2.020}(\sqrt{x^2 + 1} + x) 2.020^{-x} + 3$,则关于 x 的不等式 f(1 2x) + f(x) > 6 的解集为

)

- A. $(-\infty, 1)$ B. $(1, +\infty)$
- C. $(-\infty, 2)$
- D. $(2, +\infty)$
- 4. (多选)函数 f(x)的定义域为 R,且 f(x+1)与 f(x+2)都为奇函数,则(

- A. f(x)为奇函数 B. f(x)为周期函数 C. f(x+3)为奇函数 D. f(x+4)为偶函数
- 5. 函数 f(x)是定义域为 R 的奇函数,满足 f(x-4) = -f(x), f(x-4) = f(-x), 且当 $x \in [0,2]$ 时, $f(x) = 2^x + \log_2 x$, 则 f(-80), f(-25), f(11)的大小关系为_____.
- 6. 已知 g(x)为偶函数,h(x)为奇函数,且满足 $g(x)-h(x)=2^x$,若存在 $x \in [-1,1]$,使得不等式 m g(x)+h(x)≤0有解, 求实数m的最大值.

纠	错补	卜偿
---	----	----

1. 订正: 题号

2. 补偿训练: