江苏省仪征中学 2019-2020 学年第一学期高三数学中档大题训练(9) 11.29

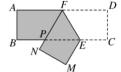
班级 ______ 姓名_____

- 1 . 在 ^ ABC 中 ,角 A ,B ,C 的对边分别为 a ,b ,c ,且 $\frac{\sqrt{3}a}{c} = \frac{2-\cos A}{\sin C}$.
 - (1) 求角 A 的大小;
 - (2)若 $\cos(B + \frac{\pi}{6}) = \frac{1}{4}$,求 \cos C的值.

- 2. 设椭圆 E 的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$, 点 O 为坐标原点 , 点 A 的坐标为 (a,0) , 点 B 的坐标为
- (0.b) ,点 M 在线段 AB 上,满足|BM|=2|MA| ,直线 OM 的斜率为 $\frac{\sqrt{5}}{10}$.
- (I) 求 E 的离心率 e;
- (II)设点 C 坐标为 $\left(0,-b\right)$,N 为线段 AC 的中点,点 N 关于直线 AB 的对称点的纵坐标为 $\frac{7}{2}$,求 E 的方程.

- **3**. 已知 $\{a_n\}$ 是公差不为0的等差数列, a_5 =6, a_1 , a_3 , a_7 成等比数列.
- (1) 求 {a_n} 的通项公式;
- (2)设 $b_n = \frac{a_n}{2^n}$, T_n 为数列 $\{b_n\}$ 的前 n 项和, 求 T_n ;
- (3) 设 $c_n=4^n+(-1)^{n-1}\lambda$ $2^{a_n}(\lambda)$ 为整数, $n\in N^*$), 试确定整数 λ 的值, 使得对任意的 $n\in N^*$, 总有 $c_{n+1}>c_n$ 成立.

- 4.如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.
 - (1)当∠EFP = $\frac{\Pi}{4}$ 时,试判断四边形 MNPE 的形状,并求其面积;



(2)若使裁剪得到的四边形 MNPE 面积最大,请给出裁剪方案,并说明理由.

江苏省仪征中学 2019-2020 学年第一学期高三数学中档大题训练(9) 答案 11.29

1、

解: (1) 由正弦定理
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
, 且 $\frac{\sqrt{3}a}{c} = \frac{2 - \cos A}{\sin C}$,1分
 得 $\frac{\sqrt{3}\sin A}{\sin C} = \frac{2 - \cos A}{\sin C}$,2分
 则有 $\sqrt{3}\sin A = 2 - \cos A$, 即 $\sqrt{3}\sin A + \cos A = 2$, $2\sin(A + \frac{\pi}{6}) = 2$,
 则 $\sin(A + \frac{\pi}{6}) = 1$,4分
 因为 $A \in (0, \pi)$, 则 $A + \frac{\pi}{6} \in (\frac{\pi}{6}, \frac{7\pi}{6})$, 则 $A + \frac{\pi}{6} = \frac{\pi}{2}$, 即 $A = \frac{\pi}{3}$6分
 (2) 在 ΔABC 中,因为 $A = \frac{\pi}{3}$,则 $B \in (0, \frac{2\pi}{3})$, $B + \frac{\pi}{6} \in (\frac{\pi}{6}, \frac{5\pi}{6})$,则 $\sin(B + \frac{\pi}{6}) > 0$.

又因为
$$\cos(B+\frac{\pi}{6}) = \frac{1}{4}$$
,则 $\sin(B+\frac{\pi}{6}) = \sqrt{1-\cos^2(B+\frac{\pi}{6})} = \frac{\sqrt{15}}{4}$8分

又在
$$\triangle ABC$$
中, $A+B+C=\pi$,

所以
$$\cos C = \cos(\pi - A - B) = -\cos(A + B) = -\cos(B + \frac{\pi}{3})$$
 -----10 分

$$=-\cos[(B+\frac{\pi}{6})+\frac{\pi}{6}] = -\cos(B+\frac{\pi}{6})\cos\frac{\pi}{6} + \sin(B+\frac{\pi}{6})\sin\frac{\pi}{6}$$
$$=-\frac{\sqrt{3}}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{\sqrt{15}}{4} = \frac{\sqrt{15} - \sqrt{3}}{8} . \dots 14$$

(II) 由题设条件和(I) 的计算结果可得,直线 AB 的方程为 $\frac{x}{\sqrt{5}b}$ + $\frac{y}{b}$ = 1 ,点 N 的坐标

为 $(\frac{\sqrt{5}}{2}b, -\frac{1}{2}b)$,设点 N 关于直线 AB 的对称点 S 的坐标为 $(x_1, \frac{7}{2})$,则线段 NS 的中点 T 的

坐标为
$$(\frac{\sqrt{5}}{4}b+\frac{x_1}{2},-\frac{1}{4}b+\frac{7}{4})$$
 .又点 T 在直线 AB 上,且 $k_{NS}\cdot k_{AB}=-1$,从而有

$$\frac{\frac{\sqrt{5}}{4}b+\frac{x_1}{2}}{\sqrt{5}b}+\frac{-\frac{1}{4}b+\frac{7}{4}}{b}=1$$
 { 解得 $b=3$,所以 $a=3\sqrt{5}$,故椭圆 E 的方程为 $\frac{x^2}{45}+\frac{y^2}{9}=1$.

3、解析 (1)设等差数列{an}的公差为 d(d≠0).

∵a1,a3,a7 成等比数列,∴a1(a1+6d)=(a1+2d)2,∴2a1d=4d2,∵d≠0,∴a1=2d,

又 a5=a1+4d=6,∴d=1,a1=2,∴an=2+(n-1)×1=n+1.

(2)bn=
$$\frac{a_n}{2^n}=\frac{n+1}{2^n}$$
, Tn= $\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{n+1}{2^n}$,

$$\frac{1}{2}$$
Tn= $\frac{2}{2^2}$ + $\frac{3}{2^3}$ +...+ $\frac{n}{2^n}$ + $\frac{n+1}{2^{n+1}}$,

$$\therefore \frac{1}{2} \text{Tn} = 1 + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} - \frac{n+1}{2^{n+1}} = 1 + \frac{\frac{1}{4} \left(1 - \frac{1}{2^{n+1}}\right)}{1 - \frac{1}{2}} - \frac{n+1}{2^{n+1}} = \frac{3}{2} - \frac{n+3}{2^{n+1}},$$

$$\therefore Tn = 3 - \frac{n+3}{2^n}.$$

 $(3) c_n = 4^n + (-1)^{n-1} \lambda \cdot 2^{n+1}, c_{n+1} = 4^{n+1} + (-1)^n \lambda \cdot 2^{n+2},$ 对任意的 $n \in N^*$, 要 $c_{n+1} > c_n$ 恒成立, 则

①当 n 为偶数时, 4^{n+1} + $\lambda \cdot 2^{n+2}$ > 4^n - $\lambda \cdot 2^{n+1}$, ∴ $3\lambda \cdot 2^{n+1}$ >- $3 \cdot 4^n$, ∴ λ >- 2^{n-1} (n=2, 4, 6, …).

∵n 为偶数, ∴当 n=2 时, (-2ⁿ⁻¹)_{max}=-2, ∴ λ>-2;

②当 n 为奇数时, 4^{n+1} – λ • 2^{n+2} > 4^n + λ • 2^{n+1} , ∴ 3 λ • 2^{n+1} < 3 • 4^n , ∴ λ < 2^{n-1} (n=1, 3, 5, …).

∵n 为奇数, ∴当 n=1 时, (2ⁿ⁻¹)_{min}=1, ∴ λ <1.

由①②得-2<λ<1, ∵ λ 为整数, ∴ λ =-1 或 0.

4、解:(1)当
$$\angle$$
EFP= $\frac{\Pi}{4}$ 时,由条件得 \angle EFP= \angle EFD= \angle FEP= $\frac{\Pi}{4}$,

所以
$$\angle$$
FPE = $\frac{\Pi}{2}$,即 FN \perp BC,

所以四边形 MNPE 为矩形,此时 PN = FN - PF = 3 - 2 = 1 (m),所以四边形 MNPE 的面积 S = PN·MN = 2(m2).

(2)法一:设
$$\angle$$
EFD = $\theta \left(0 < \theta < \frac{\Pi}{2}\right)$,

由条件,知∠EFP=∠EFD=∠FEP=θ.

所以 PF =
$$\frac{2}{\sin \pi - 2\theta} = \frac{2}{\sin 2\theta}$$
,

$$NP = NF - PF = 3 - \frac{2}{\sin 2\theta}$$
, $ME = 3 - \frac{2}{\tan \theta}$.

由
$$\begin{cases} 3 - \frac{2}{\sin 2\theta} > 0 , \\ 3 - \frac{2}{\tan \theta} > 0 , \end{cases}$$
 得
$$\begin{cases} \sin 2\theta > \frac{2}{3} , \\ \tan \theta > \frac{2}{3} , \end{cases}$$
 *
$$0 < \theta < \frac{\pi}{2} , \end{cases}$$

所以四边形 MNPE 面积为 $S = \frac{1}{2}(NP + ME)MN$

$$= \frac{1}{2} \left[3 - \frac{2}{\sin 2\theta} + \left(3 - \frac{2}{\tan \theta} \right) \right] \times 2 = 6 - \frac{2}{\tan \theta} - \frac{2}{\sin 2\theta}$$

$$= 6 - \frac{2}{\tan \theta} - \frac{2 - \sin 2\theta + \cos 2\theta}{2\sin \theta \cos \theta} = 6 - \left(\tan \theta + \frac{3}{\tan \theta}\right)$$

$$\leq 6 - 2 \sqrt{\tan \theta \cdot \frac{3}{\tan \theta}} = 6 - 2\sqrt{3}.$$

当且仅当 $\tan \theta = \frac{3}{\tan \theta}$,即 $\tan \theta = \sqrt{3}$, $\theta = \frac{\Pi}{3}$ 时取" = ".

此时,(*)成立.

答:当 \angle EFD = $\frac{\Pi}{3}$ 时,沿直线 PE 裁剪,四边形 MNPE 的面积最大,最大值为 $\left(6-2\sqrt{3}\right)$ m2.

法二:设BE=t m,3<t<6,则ME=6-t.

因为∠EFP = ∠EFD = ∠FEP,

所以 PE = PF,即
$$\sqrt{3-BP + 2+22}$$
 = t - BP.

所以 BP =
$$\frac{13 - t2}{2 - 3 - t}$$
,

NP = 3 - PF = 3 - PE = 3 - (t - BP) = 3 - t +
$$\frac{13 - t2}{2 - 3 - t}$$
.

由
$$\left\{ \begin{array}{l} 3 < t < 6 \ , \\ \frac{13 - t2}{2 - 3 - t} > 0 \ , \\ 3 - t + \frac{13 - t2}{2 - 3 - t} > 0 \ , \end{array} \right.$$
 得 $\left\{ \begin{array}{l} 3 < t < 6 \ , \\ t > \sqrt{13} \ , \\ t 2 - 12t + 31 < 0. \end{array} \right.$

所以四边形 MNPE 面积为

$$S = \frac{1}{2}(NP + ME)MN$$

$$= \frac{1}{2} \begin{bmatrix} 3 - t + \frac{13 - t2}{2 - 3 - t} + 6 - t \end{bmatrix} \times 2 = \frac{3t2 - 30t + 67}{2 - 3 - t}$$

$$=6 - \left[\frac{3}{2} + \frac{2}{t-3}\right] \le 6 - 2\sqrt{3}.$$

当且仅当
$$\frac{3}{2}$$
(t - 3) = $\frac{2}{t-3}$,即 t = 3 + $\sqrt{\frac{4}{3}}$ = 3 + $\frac{2\sqrt{3}}{3}$ 时取" = ".此时,(*)成立.

答:当点 E 距 B 点 $3+\frac{2\sqrt{3}}{3}$ m 时,沿直线 PE 裁剪,四边形 MNPE 的面积最大,最大值为(6 - $2\sqrt{3}$)m2.