2020 届有机化学题型的研究 (有机小合成路线设计)

唐山市第二中学化学教研组

一. 知识素养---手握官能团性质

官能团	结构	性质
碳碳双键	C=C	易加成、易氧化、易聚合
碳碳三键	—C≡C—	易加成、易氧化
卤素	—X(X 表示 Cl、Br 等)	易取代(如溴乙烷与NaOH水溶液共热生成乙醇)、易消去(如溴乙烷与NaOH醇溶液共热生成乙烯)
醇羟基	—ОН	易取代、易消去(如乙醇在浓硫酸、170℃ 条件下生成乙烯)、易催化氧化、易被强 氧化剂氧化(如乙醇在酸性 K ₂ Cr ₂ O ₇ 溶液 的作用下被氧化为乙醛甚至乙酸)
酚羟基	—ОН	极弱酸性(酚羟基中的氢能与 NaOH 溶液 反应,但酸性极弱,不能使指示剂变色)、易氧化(如无色的苯酚晶体易被空气中的氧气氧化为粉红色)、显色反应(如苯酚 遇 FeCl ₃ 溶液呈紫色)
醛基	—C—H	易氧化(如乙醛与银氨溶液共热生成银 镜)、易还原
羰基	O - - -	O
羧基	—С—ОН О	酸性(如乙酸的酸性强于碳酸,乙酸与 NaOH溶液反应)、易取代(如乙酸与乙醇 在浓硫酸、加热条件下发生酯化反应)

酯基	O COR	易水解(如乙酸乙酯在稀硫酸、加热条件下发生酸性水解,乙酸乙酯在 NaOH 溶液、加热条件下发生碱性水解)
醚键	R—O—R	如环氧乙烷在酸催化下与水一起加热生成乙二醇
硝基	—NO ₂	如酸性条件下,硝基苯在铁粉催化下被 NO_2 NH_2 Fe HCl HCl

二. 能力素养----官能团转化清晰

1. 有机合成中官能团的转变

(1)官能团的引入(或转化)

	—ОН	C=C +H ₂ O; R—X+H ₂ O; R—CHO+H ₂ ; RCOR'+H ₂ ; R—COOR'+H ₂ O; 多糖发酵
官能	—X	烷烃+X ₂ ; 烯(炔)烃+X ₂ 或 HX; R—OH+HX
团的	c=c	R—OH和 R—X 的消去;炔烃不完全加氢
引入	—СНО	某些醇氧化; 烯烃氧化; 炔烃氧化; 糖类水解
	—СООН	R—CHO+O ₂ ; 苯的同系物被强氧化剂氧化; 羧酸盐酸化; R—COOR′+H ₂ O
	—C00—	酯化反应

(2)官能团的消除

- ①消除双键:加成反应。
- ②消除羟基: 消去、氧化、酯化反应。
- ③消除醛基:还原和氧化反应。
- (3)官能团的保护

被保护的官能团	被保护的官能团性质	保护方法
酚羟基	易被氧气、臭氧、双氧水、	①用 NaOH 溶液先转化为酚钠,后

1

	酸性高锰酸钾溶液氧化	酸化重新转化为酚:
		○────────────────────────────────────
		②用碘甲烷先转化为苯甲醚,后用
		氢碘酸酸化重新转化为酚:
		OH CH ₃ I OCH ₃
与甘	易被氧气、臭氧、双氧水、	先用盐酸转化为盐,后用 NaOH 溶
氨基	酸性高锰酸钾溶液氧化	液重新转化为氨基
	易与卤素单质加成,易被	用氯化氢先通过加成转化为氯代
碳碳双键	氧气、臭氧、双氧水、酸	物,后用 NaOH 醇溶液通过消去重
	性高锰酸钾溶液氧化	新转化为碳碳双键
		乙醇(或乙二醇)加成保护:
		СНО СН3СН2ОН
醛基	易被氧化	$OC_2 H_5$ $OC_2 H_5 \xrightarrow{\mathbf{H}^+/\mathbf{H}_2 \mathbf{O}}$
		СНО

三、合成思路设计有方法

1.增长碳链或缩短碳链的方法

	举例
	$2CH \equiv CH \longrightarrow CH_2 \equiv CH - C \equiv CH$
	$2R$ — Cl \xrightarrow{Na} R — R $+$ $2NaCl$
增长	$CH_3CHO \xrightarrow[H^+/H_2O]{CH_3CH_2MgBr} CH_3CHCH_2CH_3$
碳链	$R-CI \xrightarrow{HCN} R-CN \xrightarrow{H^+} R-COOH$
	$CH_3CHO \xrightarrow{HCN} CH_3 \xrightarrow{CH} CH \xrightarrow{CH} CN \xrightarrow{H^+} CH_3 \xrightarrow{CH} CH \xrightarrow{COOH}$
	nCH ₂ —CH ₂ —催化剂

	nCH_2 — CH — CH — CH_2 $\stackrel{\text{\tiny d}}{\longrightarrow}$ \tiny d \tiny d \tiny d \tiny d
	OH 2CH₃CHO NaOH稀溶液 CH₃CH—CH₂CHO
	$+R-Cl\xrightarrow{AlCl_3} R +HCl$
增长碳链	
	$ \begin{array}{c c} OH & OH \\ O & HCl H - CH_2 - OH \\ \hline $
缩短	$R - C - O - Na + NaOH \xrightarrow{CaO} RH + Na_2CO_3$
碳链	R_1 —CH—CH— $R_2 \xrightarrow{O_3} R_1$ CHO+ R_2 CHO

2.常见有机物转化应用举例

(1)

(2)

(3)

2

3. 有机合成路线设计的几种常见类型

根据目标分子与原料分子在碳骨架和官能团两方面变化的特点,我们将合成路线的设计分为

(1)以熟悉官能团的转化为主型

如:请设计以 CH_2 — $CHCH_3$ 为主要原料(无机试剂任用)制备 $CH_3CH(OH)COOH$ 的合成路线流程图(须注明反应条件)。

$$\begin{array}{c} CH_2 = CHCH_3 \stackrel{Cl_2}{\longrightarrow} CH_3 - CH - CH_2 \stackrel{NaOH/H_2O}{\bigtriangleup} CH_3 - CH - CH_2 \stackrel{O_2/Cu}{\smile} CH_3 - C - CHO \stackrel{O_2}{\longleftarrow} \frac{W_2}{\swarrow} \\ Cl \quad Cl \quad OH \quad OH \quad OH \end{array}$$

(2)以分子骨架变化为主型

如:请以苯甲醛和乙醇为原料设计苯乙酸乙酯(《二》—CH₂COOCH₂CH₃)的合成路线流程图(注明反应条件)。

提示: R—Br+NaCN→R—CN+NaBr

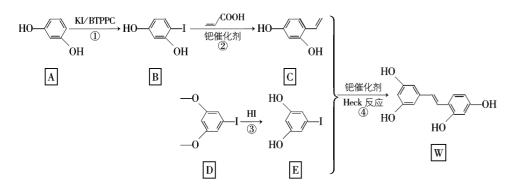
(3)陌生官能团兼有骨架显著变化型(多为考查的重点)

要注意模仿题干中的变化,找到相似点,完成陌生官能团及骨架的变化。如:模仿

设计以苯甲醇、硝基甲烷为主要原料制备苯乙胺(

)的合成路线流程图。

关键是找到原流程中与新合成路线中的相似点。(碳架的变化、官能团的变化;硝基引入及转化为氨基的过程)


$$CH_2OH$$
 CHO $HO-CHCH_2NO_2$ $CH-CHNO_2$ O_2/Cu O_2/Cu CH_3NO_2 浓硫酸 O_2/Cu O_2/C

【真题演练】

1、 [2019 年全国 1]化合物 G 是一种药物合成中间体, 其合成路线如下:

回答下列问题:

2、[2019年全国3]氧化白藜芦醇W具有抗病毒等作用。下面是利用Heck反应合成W的一种方法:

回答下列问题:

(6) 利用Heck反应,由苯和溴乙烷为原料制备 , 写出合成路线:

(无机试剂任选)

4. [2017·全国卷 I , 36(6)]已知 | + | | 催化剂

CCl₂CH₃ C≡CH 5. [2016·全国卷III, 38(6)]已知

C□CH

1)NaNH₂

2)H₂O 写出用 2-苯基乙醇为原料(其他无机试剂任选)制备化合物 D(结构简式:

6. (2017-荆门一模)已知以下信息: CH₃CH₂CH=CH₂ → CH₃CHBrCH=CH₂ 设计一条以 1-丁醇和 NBS 为原料制备顺丁橡胶(捡CH₂—CH=CH—CH₂烷)的合成路线: ______。

С≕СН

$$R_1$$
—C=CH— R_3 $\xrightarrow{O_3}$ R_1 —C— R_2 +

7. 已知: R_2 R_3 — $COOH(R_1, R_2, R_3$ 均代表烃基)。应用上述信息,以 1-丁醇为有机原料(无机试剂任选),设计制备丙酸正丁酯的合成路线:

8. 己知

9. 写出以苯甲醛和氯乙烷为原料,制备苄基乙醛 ——CH₂CH₂CHO 的合成路线流程图。 (无机试剂任用,合成路线流程图示例如下,并注明反应条件)。

$$CH_3CH_2OH$$
 浓硫酸 CH_2 $CH_$

已知: 羰基 α-Η 可发生反应: