江苏省仪征中学高一年级 4 月月考

姓名

考生注意:

- 1. 本试卷满分 150 分, 考试时间 120 分钟;
- 2. 本试卷主要考试内容: 解三角形、直线与圆。
- 一、选择题(本大题共 12 小题, 共 60.0 分)
- 1. 直线 x = -1 的倾斜角为()

A.0

C. $\frac{\pi}{2}$

D. 不存在

在 $\triangle ABC$ 中,角 A 、 B 、 C 对应的边分别是 a 、 b 、 c ,已知 $A=60^{\circ}$, $a=4\sqrt{3}$, b=4 ,则 B 等于 ()

A. 30°

B. 45°

 $\mathbf{C}.~60^{\circ}$

D. 90°

3. $\mathbb{B}(x-1)^2 + y^2 = 4$ 的半径是()

B. $\sqrt{2}$

C. 2

D. $2\sqrt{2}$

4. 在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, b=5 , $c=5\sqrt{3}$, $A=30^{\circ}$,则 a 等于 ()

B. 4

5. 过点 P(1,2) 且与直线 3x + y - 1 = 0 平行的直线方程是()

A. 3x + y - 5 = 0 **B.** x + 3y - 7 = 0

C. x - 3y + 5 = 0 D. x - 3y - 5 = 0

A. $x + \sqrt{3}y - 2 = 0$ B. $x + \sqrt{3}y - 4 = 0$ C. $x - \sqrt{3}y + 4 = 0$ D. $x - \sqrt{3}y + 2 = 0$

7. 在 $\triangle ABC$ 中,内角 A、B、C 的对边分别为 a, b, c, 若 2bcosB = acosC + ccosA,则 B = ()

A. $\frac{2\pi}{3}$

B. $\frac{5\pi}{6}$

C. $\frac{\pi}{6}$

8. 己知直线 $l_1: mx + (m-3)y + 1 = 0$,直线 $l_2: (m+1)x + my - 1 = 0$,若 $l_1 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_1 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_2 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_2$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_3 \perp l_3$ 则 m = (m+1)x + my - 1 = 0,若 $l_3 \perp l_3 \perp$

A. 0 或 1

B. 1

C. $-\frac{3}{2}$

D. 0 或 $-\frac{3}{2}$

如图,一栋建筑物 AB 的高为 $30-10\sqrt{3}m$,在该建筑物的正东方向有一个通信塔 CD ,在它们之间的地 面点M(B, M, D)三点共线)处测得楼顶A, 塔顶C的仰角分别是 15° 和 60° , 在楼顶A处测得塔顶C的仰 角为 30° ,则通信塔 *CD* 的高为()

A. 30m

B. 60m

C. $30\sqrt{3}m$

D. $40\sqrt{3}m$

10. 已知圆 C 与圆 $(x+1)^2 + (y+2)^2 = 4$ 关于直线 y = -x 对称,

则圆 C 的方程是(

A. $(x-2)^2 + (y-1)^2 = 4$

B. $(x+2)^2 + (y-1)^2 = 4$

C. $(x-2)^2 + (y+1)^2 = 4$

D. $(x+2)^2 + (y+1)^2 = 4$

- 11. 若方程 $\sqrt{1-(x+a)^2} = x+2$ 有两个不同的实数根,则实数 a 的取值范围为().
 - A. $(2-\sqrt{2},2+\sqrt{2})$

B. $(-2-\sqrt{2},-2+\sqrt{2})$

C. $(2-\sqrt{2},1]$

- D. $[-1, \sqrt{2} 2)$
- 12. 在 $\triangle ABC$ 中, 角 A , B , C 的对边分别为 a , b , c ,且 $(a^2+b^2-c^2)(a\cos B+b\cos A)=abc$, 若 a+b=2 ,则 c 的取值范围为()
 - A. (0,2)
- **B**. [1, 2)
- C. $[\frac{1}{2}, 2)$
- D. (1,2]

- 二、填空题(本大题共4小题,共20.0分)
- 13. 在 $\triangle ABC$ 中, 角 A , B , C 所对的边分别为 a , b , c , 已知 a=1 , c=2 , $cosC=\frac{1}{4}$,则 $\triangle ABC$ 的面积 为______.
- 14. 经过点 P(-3,2) 且在 x 轴上的截距等于在 y 轴上的截距的 2 倍的直线方程为_____.
- 15. 已知坐标原点为 O,过点 P(2,6) 作直线 2mx (4m+n)y + 2n = 0(m,n 不同时为零)的垂线,垂足为 M,则 |OM| 的取值范围是_____.
- 16. 在平面直角坐标系 xOy 中,已知圆 $O: x^2 + y^2 = 1$, $O_1: (x-4)^2 + y^2 = 4$,动点 P 在直线 $x + \sqrt{3}y b = 0$ 上,过 P 点分别作圆 O,圆 O_1 的切线,切点分别为 A,B,若满足 PB = 2PA 的点 P 有且只有两个,则实数 b 的取值范围是______.

三、解答题(本大题共6小题,共70.0分)

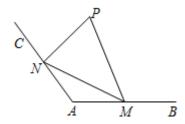
- 17. (10 分) 已知直线 l_1 : ax + y + a + 1 = 0 与 l_2 : 2x + (a 1)y + 3 = 0.
 - (1) 当 a=0 时,求直线 l_1 与 l_2 的交点坐标;
 - (2) 若 $l_1//l_2$,求 a 的值.

- 18. (12 分) 已知关于 x、y 的方程 C: $x^2 + y^2 + 2x 4y m = 0$.
 - (1) 若方程 C 表示圆,求实数 m 的取值范围;
 - (2) 若圆 C 与直线 l: x + 2y 1 = 0 相交于 M, N 两点,且 $|MN| = \frac{2}{\sqrt{5}}$,求实数 m 的值.

- 19. (12 分)在 $\triangle ABC$ 中,内角 A, B, C 所对的边分别为 a, b, c,且 (2b-3c)cosA+2acosB=0 .
 - (1) 求 cosA 的值;
 - (2) 若 a=3 , b+c=5 , 求 $\triangle ABC$ 的面积.

- 20. (12 分) 已知 $\triangle ABC$ 的顶点 A(4,3) , AB 边上的高所在直线为 x-y-3=0 , D 为 AC 中点,且 BD 所在 直线方程为 3x+y-7=0 .
 - (1) 求顶点 B 的坐标;
 - (2) 求 BC 边所在的直线方程.

- 21. (12 分) 如图,洪泽湖湿地为拓展旅游业务,现准备在湿地内建造一个观景台 P,已知射线 AB,AC 为湿地两边夹角为 $\frac{2\pi}{3}$ 的公路 (长度均超过 2 千米),在两条公路 AB,AC 上分别设立游客接送点 M,N,从观景台 P 到 M,N 建造两条观光线路 PM,PN,测得 AM = 2 千米,AN = 2 千米.
 - (1) 求线段 MN 的长度;
 - (2) 若 $\angle MPN = \frac{\pi}{3}$,求两条观光线路 PM 与 PN 之和的最大值.



- 22. (12 分) 已知圆 O 经过 A(-1,0) , $B(\frac{1}{2},\frac{\sqrt{3}}{2})$ 两点,且圆心 O 在直线 $l_1: y=x$ 上.
 - (1)求圆O的方程;
 - (2) 若点 P在直线 l_2 : 2x + y 3 = 0 上,过点 P 作圆的一条切线,C 为切点,求切线长 PC 的最小值;
 - (3)已知点 M为(1,1),若在直线 l_1 : y=x 上存在定点 N(不同于点 M),满足对于圆 O 上任意一点
 - Q,都有 $\frac{|QN|}{|QM|}$ 为一定值,求所有满足条件点N的坐标.