江苏省仪征中学 2021-2022 学年度第一学期高二物理学科导学案

10 月 16 日周测分析

	研制人:引	长杰	审核人:	李立新			
班级:	生名:	学	号:		授课日期:	10月18日	
一、学习目标							
1. 掌握部分电路中的基本	规律,理解电	表改装的)基本原理	;			
2. 掌握闭合电路欧姆定律,并能应用其解决问题;							
3. 会分析和解决电路中的	能量问题;						
4. 从实验的角度会测量电阻和电源的电动势和内阻.							
二、课前自学							
1. 订正试卷,知识查漏补	缺;						
2. 完善化学学习方法和考	试应对策略.						
三、问题探究							
1. 班级情况分析:							
通过多媒体展示学生常	営见错误						
2. 重点讲评: (选择题: 1、7, 非选择题: 11、12、14)							
(1) 第1题							
右手螺旋定则							
磁场的叠加(矢量	量云箟)						
Man William Co.							
(2) 第7题							
电路的简化							
电源输出功率							
闭合电路的欧姆昂	定律						

闭合电路的动态分析

(3) 第11题

解决本题的关键掌握螺旋测微器的读数方法 知道电流表内外接的区别 知道误差形成的原因

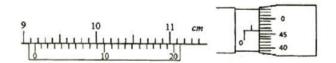
(4) 第12题

考查电学实验中的基本原理 等效替代法测电阻 安阻法测量电源电动势和内阻

(5) 第13题

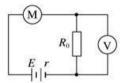
考查电功率的计算;对于纯电阻电路,计算功率的方法;

解答本题的关键是根据题意,结合串并联电路的特点,电功率的公式,选取恰当的计算公式进行计算。


四、课后小结

收获	1.
	2.
	3.
困惑	

五、反馈练习(30分钟)


班级:	姓名:	学号:	练习日期: 10月18日
刊+ 女乃 ・	世 义。	4. 4.	英 川 月 耳
クーク人・	<u> </u>		-m-1 H 291

- 1. 分别置于 a、b 两处的长直导线垂直纸面放置,通有大小相等的恒定电流,方向如图所示,
- a 、b 、c 、d 在一条直线上,且 ac=cb=bd 已知 c 点的磁感应强度大小为 B_1 ,d 点的磁感应强度大小为 B_2 若将 b 处导线的电流切断,则
- A. 点的磁感应强度大小变为 $\frac{B_1}{2}$, 点的磁感应强度大小变为 $\frac{B_1}{2}$ B_2
- B. 点的磁感应强度大小变为 $\frac{B_1}{2}$, 点的磁感应强度大小变为 $\frac{B_2}{2} B_1$
- C. 点的磁感应强度大小变为 B_1 - B_2 , 点的磁感应强度大小变为 $\frac{B_1}{2} B_2$
- D. 点的磁感应强度大小变为 B_1 - B_2 , 点的磁感应强度大小变为 $\frac{B_2}{2}$ B_1
- 2. 如图所示电路中,电源内阻忽略不计, R_0 为定值电阻, R_m 为滑动变阻器 R 的最大阻值,且有 $R_0 > R_m$; 开关 S_1 闭合后,理想电流表 A 的示数为 I,理想电压表 V_1 、 V_2 的示数分别为 U_I 、 U_2 ,其变化量的绝对值分别为 ΔI 、 ΔU_I 、 ΔU_2 。则下列说法正确的是
- A. 断开开关 S_2 ,将 R 的滑动触片向右移动,则电流 A 示数变小、电压表 V_2 示数变大
- (V_1) (V_2) (V_3) (V_3) (V_4) (V_5) $(V_5$
- B. 保持 R 的滑动触片不动,闭合开关 S_2 ,则电流表 A 示数变大、电压表 V_1 示数变小
- C. 断开开关 S_2 ,将 R 的滑动触片向右移动,则滑动变阻器消耗的电功率减小
- D. 断开开关 S₂,将 R 的滑动触片向右移动,则有 $\frac{\Delta U1}{\Delta I} = \frac{\Delta U2}{\Delta I}$
- 3. 一研究小组为测定某种金属的电阻率,截取了一段长为 L 的该种材料导线 截面为圆形 ,用游标卡尺测得其长度 L 如图,则其长度 L= _____ mm,用螺旋测微器测得其直径 D= _____ mm。

请从下面给定的器材中选出适当的元件,设计一个电路,测出该段材料的电阻(约为 600Ω),要求便于操作,方法简捷,要尽可能提高测量的精度.

- A、电源 E,电动势为 6V,内阻不计;
- B、电流表 A, 量程 10mA, 内阻约为 0.5Ω
- C、电流表 A, 量程 50 mA, 内阻约为 0.1Ω ;
- D、电压表 V, 量程 6V, 内阻约 1kΩ
- E、电压表 V, 量程 10V, 内阻约 1500 Ω ;
- F、滑动变阻器 R,全阻值 5Ω ,额定电流为 0.5A
- G、滑动变阻器 R, 全阻值 1000 Ω , 额定电流为 50 mA;
- H、开关及导线若干.
- (1) 测量电路中电流表应选____, 电压表应选____, 滑动变阻器应选____ (填代号);
- (2) 在该实验中,滑动变阻器应选择的连接方式为_____(选填"限流式""分压式"), 电流表的连接方式为_____(选填"外接""内接");
- (3) 若测出的电阻用 表示,那么该合金材料的电阻率 _____ (用字母 R、D、L 表示);
- (4) 由于电流表内阻不可忽略,所以 $R_{x_{----}}$ $R_{x_{----}}$ (选填"大于""小于""等于").
- 4. 如图所示,电源的电动势是 6V,内阻是 0.5Ω,小电动机 M 的线圈电阻为 0.5Ω,限流电阻 R_0 为 3Ω,若理想电压表的示数为 3V ,试求:
- (1) 电源的功率和电源的输出功率:
- (2) 电动机消耗的功率和电动机输出的机械功率.

