江苏省仪征中学 2020—2021 学年度第一学期高二数学 《圆锥曲线》巩固练习(1)

- 1. 若椭圆 $\frac{x^2}{9} + \frac{y^2}{m+3} = 1$ 的焦距为 2,则实数 m 的值为 ()

- 2. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 离心率为 $\frac{\sqrt{3}}{2}$, 过 F_2 的直线

交椭圆 $C \pm A$, B 两点,若 $\triangle AF_1B$ 的周长为 $4\sqrt{3}$, 则椭圆 C 的标准方程为 ()

- A. $\frac{x^2}{3} + \frac{y^2}{2} = 1$ B. $\frac{x^2}{3} + y^2 = 1$ C. $\frac{x^2}{12} + \frac{y^2}{8} = 1$ D. $\frac{x^2}{12} + \frac{y^2}{4} = 1$

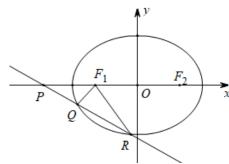
- 3. 阿基米德不仅是著名的物理学家,也是著名的数学家,他利用"逼近法"得到椭圆的面积公式,设椭圆 的长半轴长、短半轴长分别为a,b,则椭圆的面积公式为 $S=\pi ab$.若椭圆C的离心率为 $\frac{\sqrt{3}}{2}$,面积为 8π , 则椭圆C的标准方程为()
 - A. $\frac{x^2}{16} + \frac{y^2}{16} = 1$ $\vec{y} \frac{y^2}{16} + \frac{x^2}{16} = 1$ B. $\frac{x^2}{16} + \frac{y^2}{12} = 1$ $\vec{y} \frac{y^2}{16} + \frac{x^2}{12} = 1$
 - C. $\frac{x^2}{12} + \frac{y^2}{4} = 1$ $\vec{y} \frac{y^2}{12} + \frac{x^2}{4} = 1$ $\vec{y} \frac{x^2}{12} + \frac{y^2}{12} = 1$ $\vec{y} \frac{x^2}{12} + \frac{y^2}{12} = 1$
- 4. (多选) 在平面直角坐标系 xOy 中,椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上存在点 P ,使得 $PF_1 = 2PF_2$,

其中 F_1 、 F_2 分别为椭圆的左、右焦点,则该椭圆的离心率可能为(

- A. $\frac{1}{2}$ B. $\frac{1}{3}$ C. $\frac{1}{4}$ D. $\frac{1}{5}$
- 5. 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的两个焦点分别为 $F_1, F_2, |F_1F_2| = 2\sqrt{2}, P \in C$ 上一点,若 $|PF_1| - |PF_2| = a$,且 $PF_2 \perp F_1F_2$,则椭圆 **c** 的方程为______
- 6. 已知椭圆 $C: \frac{x^2}{2} + y^2 = 1$,过右焦点的直线l: y = x 1与椭圆交与A, B两点,O为坐标原点,

则 ΔOAB 的面积为 .

- 7. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左,右焦点分别为 F_1 、 F_2 ,该椭圆的离心率为 $\frac{\sqrt{2}}{2}$,以原点 为圆心,椭圆的短半轴长为半径的圆与直线 $v = x + \sqrt{2}$ 相切.
- (1) 求椭圆C的方程;
- (2) 如图, 若斜率为 $k(k \neq 0)$ 的直线l = x轴, 椭圆C顺次交于P, Q, R(P点在椭圆左顶点的左侧) 且 $\angle RF_1F_2 = \angle PF_1Q$, 求证: 直线l过定点.



江苏省仪征中学 2020—2021 学年度第一学期高二数学 《圆锥曲线》巩固练习(2)

- 1. 双曲线 $\frac{x^2}{4} \frac{y^2}{5} = 1$ 的渐近线方程是()
- A. $y = \pm \frac{\sqrt{5}}{2}x$ B. $y = \pm \frac{2\sqrt{5}}{5}x$ C. $y = \pm \frac{4}{5}x$ D. $y = \pm \frac{5}{4}x$

- 2. 已知双曲线的方程为 $\frac{x^2}{4} \frac{y^2}{3} = 1$,双曲线右焦点 F 到双曲线渐近线的距离 ()

 $C.\sqrt{3}$

- A.1
- $B.\sqrt{2}$

- 3. 在平面直角坐标系 xOy 中,若点 $P(4\sqrt{3},0)$ 到双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{9} = 1$ 的一条渐近线的

距离为 6,则双曲线 C 的离心率为()

- A.2
- B.4 C. $\sqrt{2}$ D. $\sqrt{3}$
- 4. (多选) 已知抛物线 $y^2 = 4x$ 的准线过双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的左焦点 F,且与 双曲线交于 A, B 两点,O 为坐标原点, $\triangle AOB$ 的面积为 $\frac{3}{2}$,则下列结论正确的有()
- A. 双曲线 C 的方程为 $4x^2 \frac{4y^2}{3} = 1$ B. 双曲线 C 的两条渐近线的夹角为 60°
- C. 点 F 到双曲线 C 的渐近线的距离为 $\sqrt{3}$
- D. 双曲线C的离心率为2
- 5. 经过点 A(2,-2) 且与双曲线 $\frac{x^2}{2} y^2 = 1$ 有公共渐近线的双曲线方程为_____
- 6. 设双曲线 C: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a>0, b>0) 的左、右焦点分别为 F_1 , F_2 , 离心率为 $\sqrt{5}$. P是 C上一点,且 $F_1P \perp F_2P$. 若 $\triangle PF_1F_2$ 的面积为 8,则 a=______

- 7. 已知双曲线 C 过点 $\left(4,\sqrt{3}\right)$,且渐近线方程为 $y=\pm\frac{1}{2}x$,直线 l 与曲线 C 交于点 M、N 两点.
- (1) 求双曲线 C的方程;
- (2) 若直线l过点 $\left(1,0\right)$,问在 x 轴上是否存在定点 Q,使得 $\overrightarrow{QM}\cdot\overrightarrow{QN}$ 为常数?若存在,求出点坐标及 此常数的值;若不存在,说明理由.

江苏省仪征中学 2020—2021 学年度第一学期高二数学 《圆锥曲线》巩固练习(3)

- 1. 设抛物线的顶点在原点,准线方程为 x=-2,则抛物线的方程是()
- A. $y^2 = -8x$ B. $y^2 = 8x$ C. $y^2 = -4x$ D. $y^2 = 4x$

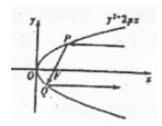
- 2. 已知**F**是抛物线 $y^2 = 4x$ 的焦点,M, N 是该抛物线上两点,|MF| + |NF| = 6,

则 MN 的中点到准线的距离为()

- A. $\frac{3}{2}$
- B. 2 C. 3

- D. 4
- 3. 已知抛物线 $y^2 = 2px(p>0)$,过抛物线的焦点作 x 轴的垂线,与抛物线交于 A,B 两点,点 M 的坐标为 (-2,0),且 $\triangle ABM$ 为直角三角形,则以直线 AB 为准线的抛物线的标准方程为()

- A. $y^2 = 8x$ B. $y^2 = -8x$ C. $y^2 = -4x$ D. $y^2 = 4x$
- 4. (多选) 已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点 F 到准线的距离为 2,过点 F 的直线与 抛物线交于 P,Q 两点,M 为线段 PQ 的中点,O 为坐标原点,则()
- A. C 的准线方程为 y=1
- B. 线段 PQ 长度的最小值为 4
- C. M 的坐标可能为(3,2)
- D. $\overrightarrow{OP} \cdot \overrightarrow{OO} = -3$
- 5. 过抛物线 $y^2 = 8x$ 的焦点 F 的直线 l 与抛物线交于 A, B 两点,线段 AB 的中点 M 在 直线 y=2上,O 为坐标原点,则 ΔAOB 的面积为__



6. 抛物线有如下光学性质由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有 抛物线 $y^2 = 2px(p>0)$,如图,一平行 x 轴的光线射向抛物线上的点 P,经过抛物线的焦点 F 反射后射向 抛物线上的点 Q,再反射后又沿平行 x 轴方向射出,若两平行光线间的最小距离为 6,则此抛物线的方程

- 7. 在平面直角坐标系 xOy 中,已知圆 $F: (x-2)^2 + y^2 = 1$,动圆 M 与直线 l: x = -1 相切 且与圆F外切.
- (1) 记圆心M的轨迹为曲线C,求曲线C的方程;
- (2) 已知 A(-2, 0),曲线 C 上一点 P 满足 $PA = \sqrt{2}PF$,求 $\angle PAF$ 的大小.

江苏省仪征中学 2020—2021 学年度第一学期高二数学

《圆锥曲线》巩固练习(1)

- 1. 若椭圆 $\frac{x^2}{9} + \frac{y^2}{m+3} = 1$ 的焦距为 2,则实数 m 的值为 () D

- 2. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 离心率为 $\frac{\sqrt{3}}{2}$, 过 F_2 的直线交椭

圆C于A,B两点,若 $\triangle AF_1B$ 的周长为 $4\sqrt{3}$,则椭圆C的标准方程为(A)

A.
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

B.
$$\frac{x^2}{3} + y^2 = 1$$

C.
$$\frac{x^2}{12} + \frac{y^2}{8} = 1$$

D.
$$\frac{x^2}{12} + \frac{y^2}{4} = 1$$

3. 阿基米德不仅是著名的物理学家,也是著名的数学家,他利用"逼近法"得到椭圆的面积公式,设椭圆 的长半轴长、短半轴长分别为a,b,则椭圆的面积公式为 $S=\pi ab$.若椭圆C的离心率为 $\frac{\sqrt{3}}{2}$,面积为 8π , 则椭圆C的标准方程为()A

$$A.\frac{x^2}{16} + \frac{y^2}{4} = 1 \implies \frac{y^2}{16} + \frac{x^2}{4} = 1$$

A.
$$\frac{x^2}{16} + \frac{y^2}{4} = 1$$
 $\vec{\boxtimes} \frac{y^2}{16} + \frac{x^2}{4} = 1$ B. $\frac{x^2}{16} + \frac{y^2}{12} = 1$ $\vec{\boxtimes} \frac{y^2}{16} + \frac{x^2}{12} = 1$

C.
$$\frac{x^2}{12} + \frac{y^2}{4} = 1$$
 $\vec{y} \frac{y^2}{12} + \frac{x^2}{4} = 1$ $\vec{y} \frac{x^2}{12} + \frac{y^2}{12} = 1$ $\vec{y} \frac{x^2}{12} + \frac{y^2}{12} = 1$

$$D.\frac{x^2}{16} + \frac{y^2}{9} = 1 \ \ \vec{\boxtimes} \frac{x^2}{9} + \frac{y^2}{16} = 1$$

4. (多选) 在平面直角坐标系 xOy 中,椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上存在点 P,使得 $PF_1 = 2PF_2$,其

中 F_1 、 F_2 分别为椭圆的左、右焦点,则该椭圆的离心率可能为()AB

- A. $\frac{1}{2}$ B. $\frac{1}{3}$ C. $\frac{1}{4}$ D. $\frac{1}{5}$

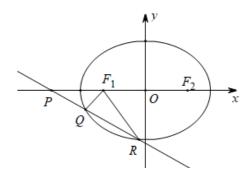
- 5. 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的两个焦点分别为 $F_1, F_2, |F_1F_2| = 2\sqrt{2}$, $P \in C$ 上一点,若

$$|PF_1| - |PF_2| = a$$
, $\exists PF_2 \perp F_1F_2$, 则椭圆 c 的方程为______. $\frac{x^2}{4} + \frac{y^2}{2} = 1$

6. 已知椭圆 $C: \frac{x^2}{2} + y^2 = 1$,过右焦点的直线l: y = x - 1与椭圆交与A, B两点,O为坐标原点,

则 $\triangle OAB$ 的面积为______. $\frac{2}{3}$

- 7. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左,右焦点分别为 F_1 、 F_2 ,该椭圆的离心率为 $\frac{\sqrt{2}}{2}$,以原点为
- 圆心,椭圆的短半轴长为半径的圆与直线 $y = x + \sqrt{2}$ 相切.



- (1) 求椭圆C的方程;
- (2) 如图, 若斜率为 $k(k \neq 0)$ 的直线l = x轴, 椭圆C顺次交于P, Q, R(P点在椭圆左顶点的左侧)且

 $\angle RF_1F_2 = \angle PF_1Q$, 求证: 直线 l 过定点.

(1) 解: 椭圆的左, 右焦点分别为 $F_1(-c,0)$, $F_2(c,0)$, 椭圆的离心率为 $\frac{\sqrt{2}}{2}$,

即有
$$\frac{c}{a} = \frac{\sqrt{2}}{2}$$
, 即 $a = \sqrt{2}c$, $b = \sqrt{a^2 - c^2} = c$,

以原点为圆心,椭圆的短半轴长为半径的圆方程为 $x^2 + y^2 = b^2$,

直线 $y = x + \sqrt{2}$ 与圆相切,则有 $\frac{|\sqrt{2}|}{\sqrt{2}} = 1 = b$,即有 $a = \sqrt{2}$,则椭圆 C 的方程为 $\frac{x^2}{2} + y^2 = 1$;

(2) 证明: 设 $Q(x_1, y_1)$, $R(x_2, y_2)$, $F_1(-1,0)$

由 $\angle RF_1F_2 = \angle PF_1Q$, 可得直线 QF_1 和 RF_1 关于 x 轴对称,

即有
$$k_{QF_1} + k_{RF_1} = 0$$
,即 $\frac{y_1}{x_1 + 1} + \frac{y_2}{x_2 + 1} = 0$,即有 $x_1 y_2 + y_2 + x_2 y_1 + y_1 = 0$,①

设直线 PQ: y = kx + t, 代入椭圆方程, 可得 $(1+2k^2)x^2 + 4ktx + 2t^2 - 2 = 0$,

判别式
$$\Delta = 16k^2t^2 - 4(1+2k^2)(2t^2-2) > 0$$
,

即为
$$t^2 - 2k^2 < 1$$
②, $x_1 + x_2 = \frac{-4kt}{1 + 2k^2}$, $x_1 x_2 = \frac{2t^2 - 2}{1 + 2k^2}$ ③,

 $y_1 = kx_1 + t$, $y_2 = kx_2 + t$,

代入①可得, $(k+t)(x_1+x_2)+2t+2kx_1x_2=0$,

将③代入, 化简可得t=2k,

则直线l的方程为y = kx + 2k,即y = k(x+2).

即有直线l恒过定点(-2,0).

江苏省仪征中学 2020—2021 学年度第一学期高二数学 《圆锥曲线》巩固练习(2)

1. 双曲线 $\frac{x^2}{4} - \frac{y^2}{5} = 1$ 的渐近线方程是 () A

A.
$$y = \pm \frac{\sqrt{5}}{2}x$$
 B. $y = \pm \frac{2\sqrt{5}}{5}x$ C. $y = \pm \frac{4}{5}x$ D. $y = \pm \frac{5}{4}x$

- 2. 已知双曲线的方程为 $\frac{x^2}{4} \frac{y^2}{3} = 1$,双曲线右焦点 F 到双曲线渐近线的距离 () C
 - A.1
- $B.\sqrt{2}$ $C.\sqrt{3}$ D.2
- 3. 在平面直角坐标系 xOy 中,若点 $P(4\sqrt{3},0)$ 到双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{9} = 1$ 的一条渐近线的

距离为 6,则双曲线 C 的离心率为 () A

- A.2
- $c.\sqrt{2}$ D. $\sqrt{3}$
- 4. (多选) 已知抛物线 $y^2 = 4x$ 的准线过双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的左焦点 F,且与双曲线

交于 A, B 两点, O 为坐标原点, $\triangle AOB$ 的面积为 $\frac{3}{2}$,则下列结论正确的有(ABD)

- A. 双曲线 *C* 的方程为 $4x^2 \frac{4y^2}{2} = 1$
- B. 双曲线 C 的两条渐近线的夹角为 60°

- C. 点 F 到双曲线 C 的渐近线的距离为 $\sqrt{3}$
- D. 双曲线 C 的离心率为 2
- 6. 设双曲线 C: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的左、右焦点分别为 F_1 , F_2 , 离心率为 $\sqrt{5}$.

P是 C上一点,且 $F_1P \perp F_2P$. 若 $\triangle PF_1F_2$ 的面积为 8,则 a= . $\sqrt{2}$

- 7. 已知双曲线 C 过点 $\left(4,\sqrt{3}\right)$,且渐近线方程为 $y=\pm\frac{1}{2}x$,直线l与曲线 C 交于点 M、N 两点.
- (1) 求双曲线 C的方程;
- (2) 若直线l过点(1,0),问在 x 轴上是否存在定点 Q,使得 $\overrightarrow{QM} \cdot \overrightarrow{QN}$ 为常数? 若存在,求出点坐标及此常 数的值; 若不存在,说明理由.

【解】: (1) :双曲线
$$C$$
 过点(4、 $\sqrt{3}$),且渐近线方程为 $y=\pm\frac{1}{2}x$,
$$\left\{ \frac{18}{a^2} \frac{3}{b^2} = 1 \right\}$$
: $\left\{ \frac{18}{b} = \frac{1}{2} \right\}$
: $\left\{ \frac{b}{a} = \frac{1}{4} \right\}$
: $\left\{ \frac{x^2}{4} - y^2 = 1 \right\}$
: $\left\{ \frac{x^2}{4}$

江苏省仪征中学 2020—2021 学年度第一学期高二数学 《圆锥曲线》巩固练习(3)

. 设抛物线的顶点在原点,准线方程为 x=-2,则抛物线的方程是()B	
A. $y^2 = -8x$ B. $y^2 = 8x$ C. $y^2 = -4x$ D. $y^2 = 4x$	
2. 已知 F 是抛物线 $y^2 = 4x$ 的焦点, M,N 是该抛物线上两点, $ MF + NF = 6$,	7. 在平面直角坐标系 xOy 中,已知圆 $F: (x-2)^2 + y^2 = 1$,动圆 M 与直线 $l: x = -1$ 相切
则 <i>MN</i> 的中点到准线的距离为()C	且与圆 F 外切.
A. $\frac{3}{2}$ B. 2 C. 3 D. 4	(1) 记圆心 M 的轨迹为曲线 C ,求曲线 C 的方程;
2 2 2 $px(p>0)$, 过抛物线的焦点作 x 轴的垂线, 与抛物线交于 A,B 两点, 点 M 的坐标为	(2) 已知 $A(-2, 0)$,曲线 C 上一点 P 满足 $PA = \sqrt{2}PF$,求 $\angle PAF$ 的大小. 解: (1) 设 $M(x, y)$,圆 M 的半径为 r .
$(-2,0)$,且 $\triangle ABM$ 为直角三角形,则以直线 AB 为准线的抛物线的标准方程为 (B)	由题意知, $MF=r+1$, M 到直线 l 的距离为 r . 方法一: 点 M 到点 $F(2,0)$ 的距离等于 M 到定直线 $x=-2$ 的距离,
A. $y^2 = 8x$ B. $y^2 = -8x$ C. $y^2 = -4x$ D. $y^2 = 4x$	根据抛物线的定义知,曲线 C 是以 $F(2, 0)$ 为焦点, $x=-2$ 为准线的抛物线.
4. (多选)已知抛物线 $C: y^2 = 2px(p>0)$ 的焦点 F 到准线的距离为 2,过点 F 的直线与	故曲线 C 的方程为 $y^2=8x$.
抛物线交于 P,Q 两点,M 为线段 PQ 的中点,O 为坐标原点,则() BCD	方法二: 因为 $MF = \sqrt{(x-2)^2 + y^2} = r+1$, $ x+1 = r$, $x > -1$, 所以 $\sqrt{(x-2)^2 + y^2} = x+2$, 化简得 $y^2 = 8x$,
A.C 的准线方程为 $y=1$ B.线段 PQ 长度的最小值为 4	故曲线 C 的方程为 $y^2=8x$.
C.M 的坐标可能为 $(3,2)$ D. $\overrightarrow{OP} \cdot \overrightarrow{OQ} = -3$	(2) 方法一: 设 $P(x_0, y_0)$, 由 $PA = \sqrt{2}PF$, $ \{ (x_0 + 2)^2 + y_0^2 = 2[(x_0 - 2)^2 + y_0^2], $
5. 过抛物线 $y^2 = 8x$ 的焦点 F 的直线 l 与抛物线交于 A, B 两点,线段 AB 的中点 M 在	又 $y_0^2 = 8x_0$,解得 $x_0 = 2$,故 $P(2, \pm 4)$,
_	所以 $k_{PA}=\pm 1$,从而 $\angle PAF=\frac{\pi}{4}$
直线 $y=2$ 上, O 为坐标原点,则 $\triangle AOB$ 的面积为4 $\sqrt{5}$ 6. 抛物线有如下光学性质由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有	方法二: 过点 P 向直线 $x=-2$ 作垂线,垂足为 Q . 由抛物线定义知, $PQ=PF$,所以 $PA=\sqrt{2}PQ$,
抛物线 $y^2 = 2px(p>0)$,如图,一平行 x 轴的光线射向抛物线上的点 P ,经过抛物线的焦点 F 反射后射向	在 $\triangle APQ$ 中,因为 $\angle PQA = \frac{\pi}{2}$,
抛物线上的点 Q,再反射后又沿平行 x 轴方向射出,若两平行光线间的最小距离为 6,则此抛物线的方程。	所以 $\sin \angle QAP = \frac{PQ}{PA} = \frac{\sqrt{2}}{2}$,
为 $y^2 = 6x$	从而 $\angle QAP = \frac{\pi}{4}$,故 $\angle PAF = \frac{\pi}{4}$