江苏省仪征中学 2020-2021 学年度高三数学寒假自主练习(1)

一、单选题

1. 1. 已知集合
$$A = \left\{ x \middle| \frac{x-3}{x-7} \leqslant 0 \right\}, B = \left\{ x \middle| x^2 - 7x + 10 < 0 \right\}, 则 C_R (A \cap B) = ($$

A. $(-\infty,3)\cup(5,+\infty)$

B. $(-\infty,3] \cup (5,+\infty)$

C. $(-\infty,3) \cup [5,+\infty)$

D. $(-\infty,3] \cup [5,+\infty)$

2. 复数 z 满足 $z \cdot z + z + z = 17$,则 |z + 2 - i| 的最小值为 ()

A. $2\sqrt{2}$

B. $3\sqrt{2}$ C. $4\sqrt{2}$ D. $5\sqrt{2}$

3. 下列命题中正确命题的个数是(

①对于命题 $p:\exists x \in R$,使得 $x^2+x+1<0$,则 $\neg p:\exists x \in R$,均有 $x^2+x+1>0$;

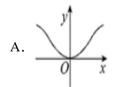
②命题"已知 x, $y \in R$, 若 $x + y \neq 3$, 则 $x \neq 2$ 或 $y \neq 1$ "是真命题;

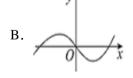
③设 \vec{a} , \vec{b} 是非零向量,则" $|\vec{a}| = |\vec{b}|$ "是" $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ "的必要不充分条件;

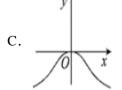
④ m = 3 是直线 (m+3)x + my - 2 = 0 与直线 mx - 6y + 5 = 0 互相垂直的充要条件.

A. 1

C. 3


4. 已知数列 $\left\{a_{n}\right\}$ 满足 $a_{n+2}-2a_{n+1}+a_{n}=1$,且 $a_{1}=1$, $a_{2}=2$,则 $a_{10}=$ ()


A. 2^9


B. $2^9 - 1$

D. 46

5. 函数 $f(x) = x \left(\frac{2}{1 + 2^x} - 1 \right)$ 的图象大致为 ()

6. 类比"赵爽弦图",可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等 边三角形拼成的一个大等边三角形,设 D 为 BE 中点,若在大等边三角形中随机取一点,则此点 取自小等边三角形的概率是(

7. 设双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点是 F , 左、右顶点分别是 A_1, A_2 , 过 F 作 x 轴的垂线

与双曲线交于 B,C 两点,若 $A_1B \perp A_2C$,则双曲线的离心率为(

A. $\sqrt{2}$

B. $2\sqrt{3}$ C. $\frac{\sqrt{5}}{2}$ D. $\sqrt{5}$

8. 已知函数 $y = \frac{x^3}{2} + \frac{mx^2}{2} + (m+n)x + 1$ 的两个极值点分别为 x_1 , x_2 , 且 $x_1 \in (0,1)$, $x_2 \in (1,+\infty)$,

记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数 $y = \log_a(x+4)(a>1)$ 的图象上存在区域D内的点,则实数a的取值范围为(

A. (1,3]

B. (1,3)

C. $(3,+\infty)$ D. $[3,+\infty)$

二、多选题

9. 下列说法中,正确的命题是(

A. 已知随机变量 ξ 服从正态分布 $N(2,\delta^2)$, $P(\xi < 4) = 0.84$, 则 $P(2 < \xi < 4) = 0.16$.

B. 以模型 $y = ce^{kx}$ 去拟合一组数据时,为了求出回归方程,设 $z = \ln y$,将其变换后得到线性方 程 z = 0.3x + 4 , 则 c , k 的值分别是 e^4 和 0.3.

C. 已知两个变量具有线性相关关系,其回归直线方程为y=a+bx,若b=2,x=1,y=3, 则a=1.

D. 若样本数据 x_1 , x_2 , ..., x_{10} 的方差为 2,则数据 $2x_1-1$, $2x_2-1$, ..., $2x_{10}-1$ 的方差 为16.

10. 已知函数 $f(x) = 2\sin x \cos x - 2\sin^2 x$, 给出下列四个选项, 正确的有 ().

A. 函数 f(x) 的最小正周期是 π

B. 函数 f(x) 在区间 $\left[\frac{\pi}{8}, \frac{5\pi}{8}\right]$ 上是减函数

C. 函数 f(x) 的图象关于点 $\left(-\frac{\pi}{8},0\right)$ 对称

D. 函数 f(x) 的图象可由 $y = \sqrt{2} \sin 2x$ 的图象向右平移 $\frac{\pi}{8}$ 个单位,再向下平移 1 个单位得到.

11. 已知函数 y = f(x) 是 R 上的奇函数,对任意 $x \in \mathbb{R}$,都有 f(2-x) = f(x) + f(2) 成立,

当 $x_1, x_2 \in [0,1]$, 且 $x_1 \neq x_2$ 时,都有 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0$,则下列结论正确的有()

A. $f(1)+f(2)+f(3)+\cdots+f(2019)=0$

B. 直线 x = -5 是函数 y = f(x) 图象的一条对称轴

C. 函数 y = f(x) 在 [-7,7] 上有 5 个零点 D. 函数 y = f(x) 在 [-7,-5] 上为减函数

12. 设定义在 R 上的函数 f(x)满足 $f(-x)+f(x)=x^2$,且当 $x \le 0$ 时, f'(x) < x.己知存在 $x_0 \in \left\{ x \middle| f(x) - \frac{1}{2} x^2 \ge f(1-x) - \frac{1}{2} (1-x)^2 \right\}$,且 x_0 为函数 $g(x) = e^x - \sqrt{e}x - a$ ($a \in R, e$ 为自然 对数的底数)的一个零点,则实数 a 的取值可能是(

A.
$$\frac{1}{2}$$

B.
$$\frac{\sqrt{e}}{2}$$

C.
$$\frac{e}{2}$$

D.
$$\sqrt{e}$$

三、填空题

13. 已知函数
$$f(x) = f'\left(\frac{\pi}{4}\right)\cos x + \sin x$$
 ,则曲线 $y = f(x)$ 在点 $\left(0, f(0)\right)$ 处的切线方程是

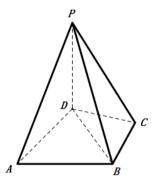
- 14. 函数 $\cos(\frac{\pi}{4} x) = -\frac{4}{5}$,那么 $\sin 2x =$ _____.
- 15. 关于x的方程(2017-x)(1999+x)=2016恰有两个根为 x_1 、 x_2 ,且 x_1 、 x_2 分别满足

$$3^{x_1} = a - 3x_1$$
 $\pi \log_3(x_2 - 1)^3 = a - 3x_2$, $M = x_1 + x_2 + a =$ ______.

16. 菱形 ABCD 边长为 6, $\angle BAD = 60^\circ$,将 ΔBCD 沿对角线 BD 翻折使得二面角 C - BD - A 的大小为 120° ,已知 A 、 B 、 C 、 D 四点在同一球面上,则球的表面积等于______.

四、解答题

17. 在
$$\triangle ABC$$
 中,三个内角分别为 A 、 B 、 C ,已知 $\sin\left(A + \frac{\pi}{6}\right) = 2\cos A$.


(1) 求角 A 的值;

(2) 若
$$B \in \left(0, \frac{\pi}{3}\right)$$
, 且 $\cos\left(A - B\right) = \frac{4}{5}$, 求 $\sin B$.

- 18. 已知数列 $\{a_n\}$ 的前n项和为 S_n , 且 $2S_n=3a_n-3(n\in N_+)$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;

(2) 记
$$b_n = \frac{4n+1}{a_n}$$
, T_n 是数列 $\{b_n\}$ 的前 n 项和, 求 T_n .

- 19. 如图,四棱锥 P-ABCD 中,底面 ABCD 为四边形, ΔABD 是边长为 2 的正三角形, $BC \perp CD$, BC = CD, $PD \perp AB$, 平面 $PBD \perp$ 平面 ABCD.
- (1) 求证: *PD* ⊥平面 *ABCD*:
- (2) 若二面角C-PB-D的平面角的余弦值为 $\frac{\sqrt{6}}{6}$,求PD的长.

20. 某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为 100 位顾客准备泡茶工具所需的时间 (t) ,结果如下:

类别	铁观音	龙井	金骏眉	大红袍
顾客数 (人)	20	30	40	10
时间t (分钟/人)	2	3	4	6

- 注: 服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
- (1) 求服务员恰好在第6分种开始准备第三位顾客的泡茶工具的概率;
- (2) 用X表示至第4分钟末已准备好了工具的顾客人数,求X的分布列及数学期望.

21. 已知椭圆 E:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > 0, b > 0)$$
的离心率 $e = \frac{\sqrt{3}}{2}$, 并且经过定点 $P(\sqrt{3}, \frac{1}{2})$

- (1) 求椭圆 E 的方程;
- (2)问是否存在直线 y=-x+m,使直线与椭圆交于 A,B 两点,满足 $\overrightarrow{OA} \cdot \overrightarrow{OB} = \frac{12}{5}$,若存在求 *m* 值,若不存在说明理由.
- 22. 已知函数 $f(x) = x \ln x (x > 0)$.
 - (1) 求 f(x) 的单调区间和极值;
 - (2) 若对任意 $x \in (0, +\infty)$, $f(x) \ge \frac{-x^2 + mx 3}{2}$ 恒成立,求实数 m 的最大值.