江苏省仪征中学 2024—2025 学年度第二学期高二化学学科导学案 专题 2 第一单元 有机化合物的结构

第2课时 同分异构体

		研制人:	杨震	审核人:	李 萍		
班级:	姓名:		学号:			授课日期:	
本课在课程标准中的表述:							

能辨识同分异构现象,能写出符合特定条件的同分异构体,能举例说明立体异构现象。

【学习目标】

- 1. 能从有机物分子中原子间的连接顺序、成键方式的角度,认识同分异构现象,能对有机物同分异构体进行分类。
- 2. 能根据烷烃同分异构体的书写,建立有机物同分异构体书写的思维模型,并会判断和书写有机物的同分异构体。

【学习过程】

导学: 知识梳理

- 一、同分异构现象与同分异构体
- 1. 同分异构现象和同分异构体

(1)同分异构现象:	有机化合物分子口	内部原子的	>	等差异产生的	相同而	不同的现象
(2)同分异构体: _	相同而	不同的化~	合物。			
①特点:	_相同,不	司,性质可能	相似也可能	尼不同 。		
②转化: 同分异	构体之间的转化是	变化	. 0			

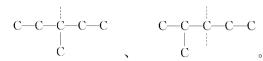
2. 同分异构现象的分类

异构方式	式	形成原因	示例
	碳链异构	不同	正丁烷: CH,—CH—CH, 异丁烷: CH,
构造 异构	位置异构	或在碳骨架(碳 链或碳环)上不同	1-丁烯: CH ₂ —CH—CH ₂ —CH ₃ 2-丁烯: CH ₃ —CH—CH—CH ₃
	官能团异构	不同	乙醇: 甲醚:
立体	顺反异构	双键碳原子所连的原 子或基团在空间的排列顺 序不同	H H C—C CH ₃ M CH ₃ C—C 反-2-丁烯: H ₃ C H
异构		存在手性碳原子,互为镜像,彼此不能	CH ₃ HO COOH H CH ₃ HOOC COOH N N N N N N N N N N N N N N N N N N

3. 同分异构现象与物质性质

(1)同分异构体虽然分子式相同,但结构不同,性质也存在差异,如三种戊烷沸点:正戊烷 异戊烷 新戊烷。

(2)天然植物油主要含<u>顺式</u>脂肪酸,因其抗氧化能力差,稳定性不好,人们会将其氢化处理转化为___脂肪酸。过多食用富含反式脂肪酸的食物易引发肥胖症和心脑血管疾病。


(3)人体剧烈运动后肌肉发酸会分解出乳酸,乳糖发酵也会产生乳酸,这两种乳酸分子构造_____,物理和化学性质_____,但两者互为对映异构体,其旋光性不同,很多药物也都存对映异构现象,其生物活性可能不同。

二、同分异构体的书写

1. 烷烃同分异构体的书写

烷烃只存在碳链异构,一般可采用"降碳对称法"进行书写,具体步骤如下(以 C₆H₁₄ 为例):

- (1)确定碳链
- ①先写直链:

②减少一个碳原子,将其作为支链并移动位置:

③减少2个碳原子,将其作为一个或两个支链并移动位置:

(2)补写氢原子:根据碳原子形成4个共价键,补写各碳原子所结合的氢原子。

 CH3CH2CHCH2CH3

 CH3CH2CHCH2CH3

 (3)C6H14共有_种同分异构体,其结构简式分别为_______、

 CH3

 <td colspan="2"

2. 烯烃(或炔烃)同分异构体的书写

C-C-C (1)按照烷烃同分异构体的书写步骤,写出可能的碳架结构: ______、 C 。

(2)根据碳架结构的对称性和碳原子的成键特点,在碳架上可能的位置添加双键:

(3)补写氢原子:根据碳原子形成4个共价键,补写各碳原子所结合的氢原子。

(4)C₄H₈共有____种同分异构体,其键线式分别为//__、___、

3. 烃的含氧衍生物同分异构体的书写

书写方法: 一般按碳链异构→位置异构→官能团异构的顺序来书写。下面以 C₄H₁₀O 为例说明。(1)碳链异构: 4 个碳原子的碳链有 2 种连接方式:

(2)位置异构:对于醇类,在碳链各碳原子上连接烃基,用"↓"表示连接的不同位置。

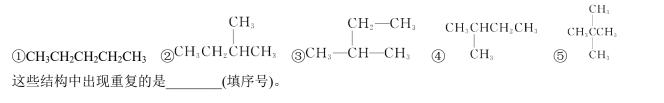
(3)官能团异构:通式为 $C_nH_{2n+2}O$ 的有机物在中学阶段只能是醇或醚,对于醚类,位置异构是因氧元素的位置 不同而导致的。

自测

1	下列描述中正确的打	"	√"	错误的打	" × '	"	_

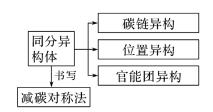
(1)每一种有机物都存在同分异构现象	(`
	()
(2)相对分子质量相同而结构不同的化合物互称为同分异构体	()
(3)同分异构体之间由于分子组成相同,所以它们的性质相同	()
(4)同分异构现象是有机化合物在自然界中数目庞大的原因之一	()
(5)分子式为 C ₂ H ₆ 、C ₃ H ₈ 的烷烃一定为纯净物	()
(6)官能团异构是因为有机物分子中官能团位置不同而形成的异构现象	()
(7)存在对映异构的有机物分子中必须含有饱和碳原子,且该碳原子相连接的 4 个原子(或基团)分	完全不同()
2. 下列描述中正确的打"√",错误的打"×"。		
(1)有机化合物的分子式、电子式、结构式及结构简式均能表示出分子中各原子的成键特点	()
(2)有机物分子中原子间形成的单键,在书写结构简式时,可以省略,也可以不省略,如乙酸的结	吉构简式可写	写为
O 		
CH_3 — $\overset{\parallel}{C}$ — OH	()
(3)丙烯的分子式为 C ₃ H ₆ ,结构简式为 CH ₃ CHCH ₂	()
O		
 (4)醛基的结构式为 ^{—C—H} ,结构简式可写为—CHO 或—COH	(`
(4)胜基的结构式为 。 ,结构间式可与为—CHO 或—COH	()
(5) 某有机物的键线式为 $\overset{\circ}{\mathrm{OH}}$,其分子式为 $\mathrm{C}_3\mathrm{H}_8\mathrm{O}$	()
(6)正丙醇的结构简式为 CH ₃ CH ₂ CH ₂ OH,可进一步简写为 C ₃ H ₇ OH	()
(0) 111 111 11 11 11 11 11 11 11 11 11 11	,	,

导思:


1. 同分异构体的书写规律

2. 有机化合物分子结构的常见表示方法

3. 同分异构体数目的判断


导练:

- 1. 书写分子式为 C₄H₉Cl 的所有同分异构体。
- 2. 戊烷共有 3 种同分异构体,戊烷分子中的一个氢原子分别被—Cl、—OH、—COOH 取代后得到卤代烃、醇、羧酸。
- (1)下列式子是某学生书写的 CsH12 的同分异构体的结构简式:

(2)用—COOH 取代 C_5H_{12} 分子中的 1 个氢原子得到分子式为 $C_6H_{12}O_2$ 的羧酸,该物质的同分异构体有 种。

导航:

导悟: