数学

第一部分(选择题共58分)

一、选择题	: 本题共8小题,	每小题5分,	共40分.	在每小题给	出的四个选	项中,只 ²	有一项是	是符合题
目要求的.								

- 1. 已知复数 $1+i=\frac{i-2}{z}$,则 $\frac{1}{z}$ 在复平面上对应的点位于()
- A. 第一象限
- B. 第二象限
- C. 第三象限

- 2. 函数 $f(x) = \ln(e^x + 1) \frac{x}{2}$ ()
- A. 是偶函数且在区间 $(0,+\infty)$ 上单调递增 B. 是偶函数且在区间 $(0,+\infty)$ 上单调递减
- C. 是奇函数且在区间 $(0,+\infty)$ 上单调递增 D. 既不是奇函数也不是偶函数

3. 定义"等方差数列":如果一个数列的各项都是实数,且从第二项起,每一项与它前一项的平 方差是相同的常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的公方差.已知各项

均为正数的数列 $\{a_n\}$ 是等方差数列,且公方差为 3, $a_1 = 1$,则数列 $\left\{\frac{1}{a_1 + a_2}\right\}$ 的前 33 项的和为

()

A. 2

B. 3

4. 某学生的 QQ 密码是由前两位是大写字母,第三位是小写字母,后六位是数字共九个符号组 成. 该生在登录 QQ时, 忘记了密码的最后一位数字, 如果该生记住密码的最后一位是奇数, 则不 超过两次就输对密码的概率为(

- A. $\frac{1}{10}$
- B. $\frac{1}{5}$ C. $\frac{2}{5}$
- D. $\frac{1}{2}$

5. 已知函数 $f(x) = x^2 + a \ln x$ 的图象有两条与直线 y = 2x 平行的切线,且切点坐标分别为

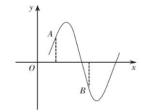
 $P(x_1, f(x_1))$, $Q(x_2, f(x_2))$,则 $x_1^2 + x_2^2$ 的取值范围是 ()

- A. $\left(-\infty, \frac{1}{2}\right)$ B. $\left(\frac{1}{2}, +\infty\right)$ C. $\left(0, \frac{1}{2}\right)$ D. $\left(\frac{1}{2}, 1\right)$

6. 己知函数 $f(x) = 2\sin(\omega x + \varphi)$, $\left(\omega > 0, |\varphi| < \frac{\pi}{2}\right)$ 的部分图象如图所示,且 f(x) 的图象经过

 $A\left(\frac{\pi}{4},1\right), B\left(\frac{5\pi}{4},-1\right)$ 两点,若将f(x)的图象向左平移 $\frac{7\pi}{12}$ 个单位得到g(x)的图象,则函数g(x)在

- $\begin{bmatrix} 0, \frac{3\pi}{4} \end{bmatrix}$ 上的最小值为() A. $-\sqrt{2}$ B. $\sqrt{2}$ C. $-\sqrt{3}$ D. -1

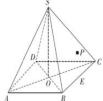


7. 如图,已知四棱锥 S - ABCD 的底面是边长为 6 的菱形 $\angle BAD = 60^{\circ}$, AC, BD 相交于点 O, $SO \bot$ 平面 ABCD, SO = 4, $E \in BC$ 的中点, 动点 P 在该棱锥表面上运动, 并且总保持 $PE \perp AC$, 则动 点P的轨迹的长为()

- B. 7
- C. 13
- D. 8

8. 已知定义在**R**上的函数 f(x) 在区间[-1,0]上单调递增,且满足 f(4-x) = f(x), f(2-x) = -f(x), f(x) = -f(x)

- B. f(0.9) + f(1.2) > 0
- C. $f(2.5) > f(\log_2 80)$ D. $f(\sin 1) > f(\ln \frac{1}{2})$



二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.

- 9. 已知随机变量 $X \sim N(4,2)$, 若 P(X > 6) = a, P(4 < X < 6) = b, 则 ()

- A. $a+b=\frac{1}{2}$ B. P(X<2)=a C. E(2X+1)=4 D. D(2X+1)=8

10. 已知复数 z_1, z_2 满足: $|z_1 + \sqrt{3}| + |z_1 - \sqrt{3}| = 4$, $|z_2 - 2i| = 1$, 则 ()

- A. $|z_2|$ 的最小值是 1 B. $|\overline{z_1}|$ 的最大值是 2
- C. $\left|\frac{z_2}{z}\right|$ 的最大值是 3
- D. $|z_1-z_2|$ 的最大值是 4
- 11. 若函数 $f(x) = 2\sin^2 x \cdot \log_2 \sin x + 2\cos^2 x \cdot \log_2 \cos x$,则 ()
- A. f(x)的最小正周期为 π B. f(x)的图像关于直线 $x = \frac{\pi}{4}$ 对称
- C. f(x)的最小值为-1 D. f(x)的单调递减区间为 $\left(2k\pi, \frac{\pi}{4} + 2k\pi\right), k \in \mathbb{Z}$

第二部分(非选择题共92分)

三、填空题: 本题共3小题,每小题5分,共15分

12. 已知抛物线 $C: y^2 = 4x$ 的焦点为 F,斜率为 2 的直线 l 与 C 的交点为 A,B,若 |AF| + |BF| = 7, 则直线1的方程为

13. 抛掷一枚不均匀的硬币,正面向上的概率为 $\frac{1}{4}$,反面向上的概率为 $\frac{3}{4}$,记n次抛掷后得到偶数 次正面向上的概率为 a_n ,则数列 $\{a_n\}$ 的通项公式 $a_n=$ ______.

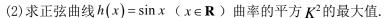
14. 已知 $\triangle ABC$ 中, G, O 分别是 $\triangle ABC$ 的重心和外心 $\overrightarrow{AG} \cdot \overrightarrow{AO} = 4$, $|\overrightarrow{AG}| = 2$, 则边 BC 的长

四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤

15. (13 分) 用数学的眼光看世界就能发现很多数学之"美". 现代建筑讲究线条感,曲线之美让人称奇. 衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下: 若f'(x)是f(x)的导函数,则曲线y = f(x)在点(x, f(x))处的曲率

$$K = \frac{\left|f''(x)\right|}{\left\{1 + \left[f'(x)\right]^2\right\}^{\frac{3}{2}}}.$$

(1) 若曲线 $f(x) = \ln x + x 与 g(x) = \sqrt{x}$ 在(1,1) 处的曲率分别为 K_1 , K_2 , 比较 K_1 , K_2 大小;



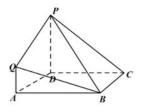
16. (15 分) 已知等比数列 $\{a_n\}$ 的公比 q>1 , $a_1+a_2+a_3=14$, a_2+1 是 a_1 , a_3 的等差中项. 等 差数列 $\{b_n\}$ 满足 $2b_1=a_2$, $b_4=a_3$.

(1)
$$c_n = \frac{b_n}{a_n} (n \in \mathbf{N}^*)$$
, 求数列 $\{c_n\}$ 的前 n 项和;

(2) 将数列 $\{a_n\}$ 与 $\{b_n\}$ 的所有项按照从小到大的顺序排列成一个新的数列,求此数列的前 2^n 项和.

17. (15 分) 在如图所示的几何体中,四边形 ABCD 是正方形,四边形 ADPQ 是梯形,PD // QA, $\angle PDA = \frac{\pi}{2}$,平面 $ADPQ \perp$ 平面 ABCD,且 AD = PD = 2QA = 2.

- (1) 求证: *QB* // 平面 *PDC*;
- (2) 求平面 CPB 与平面 PBQ 所成角的大小;
- (3) 已知点H在棱PD上,且异面直线AH与PB所成角的余弦值为 $\frac{7\sqrt{3}}{15}$,求点A到平面HBC的距离.



- 18. (17 分) 已知双曲线 $\Gamma: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的实轴长为 4,左、右焦点分别为 F_1 、 F_2 ,其中 F_2 到其渐近线的距离为 1.
- (1) 求双曲线 Γ的标准方程:
- (2) 若点 P是双曲线 Γ 在第一象限的动点,双曲线 Γ 在点 P处的切线 I_1 与 x轴相交于点 T.
- (i) 证明:射线 PT 是 $\angle F_1 PF_2$ 的角平分线;
- (ii) 过坐标原点 0的直线 l_3 与 l_4 垂直,与直线 PF_1 相交于点 Q,求 $\triangle QF_1F_2$ 面积的取值范围.
- 19. (本小题满分 17 分) 乒乓球赛有两种赛制,其中就有"5 局 3 胜制"和"7 局 4 胜制", "5 局 3 胜制"指 5 局中胜 3 局的一方取得胜利, "7 局 4 胜制"指 7 局中胜 4 局的一方取得胜利.
- (1) 甲、乙两人进行乒乓球比赛,若采用 5 局 3 胜制,比赛结束算一场比赛,甲获胜的概率为 0.8;若采用 7 局 4 胜制,比赛结束算一场比赛,甲获胜的概率为 0.9.已知甲、乙两人共进行了 $m(m \in \mathbf{N}^*)$ 场比赛,请根据小概率值 $\alpha = 0.010$ 的 K^2 独立性检验,来推断赛制是否对甲获胜的 场数有影响.
- (2) 若甲、乙两人采用 5 局 3 胜制比赛,设甲每局比赛的胜率均为 p,没有平局. 记事件"甲只要取得 3 局比赛的胜利比赛结束且甲获胜"为 A,事件"两人赛满 5 局,甲至少取得 3 局比赛胜利且甲获胜"为 B,试证明: P(A) = P(B).
- (3) 甲、乙两人进行乒乓球比赛,每局比赛甲的胜率都是 p(p>0.5),没有平局. 若采用"赛满2n-1局,胜方至少取得 n 局胜利"的赛制,甲获胜的概率记为 P(n). 若采用"赛满2n+1局,胜方至少取得 n+1 局胜利"的赛制,甲获胜的概率记为 P(n+1),试比较 P(n) 与 P(n+1) 的大小.

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, 其中 $n = a+b+c+d$.

$P(K^2 \ge k_0)$	0.05	0. 025	0. 010
k_0	3. 841	5. 024	6. 635