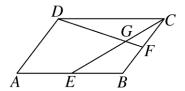
江苏省仪征中学 2024-2025 学年度第一学期高三数学学科导学案 平面向量基本定理及坐标表示

	1 1241) 		·3 · · Þ< · 3 ·		
	研制ノ	人: 居璇	审核人:	冯杰		
班级:	姓名:		学号:		授课日期:	
【课标要求】						
1. 了解平面向量	基本定理及其意义,	掌握平面向	量的正交分	解及其坐标表	表示;	
2. 会用坐标表示	平面向量的加法、源	战法与数乘运	算,理解用	坐标表示的平	面向量共线的条件.	
【基础训练】						
1. 已知向量 a =(1, 1), $2a+b=(4,$	3), $c = (x, -1)$	-2),若 b //	c,则 x 的值	为()	
A. 4	B4	C. 2	D.	-2		
2. (多选)如图所示	示, <i>C</i> , <i>D</i> 是线段 <i>AB</i>	上的两个三	等分点,则	下列关系式正	E确的是()	
A. $\overrightarrow{AB} = 3\overrightarrow{AC}$	B. $\overrightarrow{DA} = -2\overrightarrow{CD}$	C. $\overrightarrow{AC} + \overrightarrow{BI}$	$\hat{\mathbf{b}} = 0$ D.	$\overrightarrow{BC} = \overrightarrow{AD}$	\overrightarrow{A} \overrightarrow{C} \overrightarrow{D}	I
					n c b	
3 已知平行四边	形 <i>4RCD</i> 的顶占 <i>4(-</i>	-1, -2), R	2(3, -1), i	C(5、6)、周年	页点 <i>D</i> 的坐标为	
3. C/H 1 11 E/C/	7/ 11BCB 175X 11(1, 2), D	(3, 1),	C(3, 0), X1,	VW D 1177/1991	
1 设。 4 县平	面内一组基底,若 λ	$a \perp 1$, $a = 0$	līli 2. ⊥ 2. –	_		
4. 仪 [2], [2] [2]	画門 <u> </u>	$[e_1 + \lambda_2 e_2 - 0]$	- 火リス1 + ス2 =	·		
5. 已知向量 <i>a</i> =(2, 3), $b = (-1, 2)$,若 m a +n b	与 <i>a</i> -2 <i>b</i> 共	长线,则 <u>m</u> =_	·	
6."勾3股4弦5"是4	勾股定理的一个特例	1. 根据记载	,西周时期	的数学家商高	高曾经和周公讨论过"给	勾3
					D中,△ABC满足"勾3	
						, /JX
45幺5",且 <i>AB</i> =	= 3, <i>E为AD</i> 上一点,	BE ⊥ AC. ₹	$\exists BE = \lambda BA$.+μ <i>BC</i> ,则λ	.+μ旳值为 .	

【知识梳理】

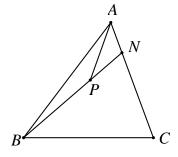
- 1. 平面向量基本定理
- 2. 平面向量基本定理的应用
- 3. 平面向量的坐标运算


【例题精讲】

一、平面向量基本定理

例 1.(1)在 $\triangle ABC$ 中,点 D,E分别在边 BC,AC上,且 \overrightarrow{BD} = $2\overrightarrow{DC}$, \overrightarrow{CE} = $3\overrightarrow{EA}$,若 \overrightarrow{AB} = \boldsymbol{a} , \overrightarrow{AC} = \boldsymbol{b} , 则DE等于(

- A. $\frac{1}{3}a + \frac{5}{12}b$ B. $\frac{1}{3}a \frac{13}{12}b$ C. $-\frac{1}{3}a \frac{5}{12}b$ D. $-\frac{1}{3}a + \frac{13}{12}b$
- (2)如图,在平行四边形 ABCD中, E, F 分别为边 AB, BC 的中点,连接 CE, DF,交于

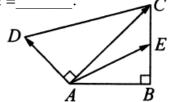

点 G.若 $\overrightarrow{CG} = \lambda \overrightarrow{CD} + \mu \overrightarrow{CB}(\lambda, \mu \in \mathbf{R}), 则_{\mu}^{\lambda} = ____.$

变式: 如图,在 $\triangle ABC$ 中, $\overrightarrow{AN} = \frac{1}{3}\overrightarrow{NC}$,点P是BN上的一点,若 $\overrightarrow{AP} = \overrightarrow{mAB} + \frac{2}{11}\overrightarrow{AC}$,则实数m的值

为(

- A. $\frac{9}{11}$ B. $\frac{5}{11}$
- C. $\frac{3}{11}$ D. $\frac{2}{11}$

二、平面向量的坐标运算


例 2. (1)已知 $\vec{a} = (1, 2)$, $\vec{b} = (1, 0)$, $\vec{c} = (3, 4)$. 若 λ 为实数, $(\vec{a} + \lambda \vec{b})//\vec{c}$,则 $\lambda = ($

A. 2

- B. 1 C. $\frac{1}{2}$ D. $\frac{1}{4}$
- (2)在 $\triangle ABC$ 中,已知点 O(0, 0),A(0, 5),B(4, 3), $\overrightarrow{OC} = \frac{1}{4}\overrightarrow{OA}$, $\overrightarrow{OD} = \frac{1}{2}\overrightarrow{OB}$, $AD \subseteq BC$ 交于 点 M,则点 M 的坐标为 .

三、选用基底或坐标解决相关问题

例 3. 如图, 在平面四边形ABCD中, $\angle CBA = \angle CAD = 90^{\circ}$, $\angle ACD = 30^{\circ}$, AB = BC, 点E为线段 BC的中点. 若 $\overrightarrow{AC} = \lambda \overrightarrow{AD} + \mu \overrightarrow{AE}(\lambda, \mu \in \mathbf{R})$,则 $\lambda = \underline{\hspace{1cm}}$, $\mu = \underline{\hspace{1cm}}$

【课堂小结】